Engineering Optimization and Modeling Center, Reykjavik University, 102, Reykjavik, Iceland.
Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233, Gdansk, Poland.
Sci Rep. 2023 Apr 12;13(1):5953. doi: 10.1038/s41598-023-32816-w.
Manufacturing tolerances and uncertainties concerning material parameters, e.g., operating conditions or substrate permittivity are detrimental to characteristics of microwave components. The knowledge of relations between acceptable parameter deviations (not leading to violation of design specifications) and the nominal performance (not considering uncertainties), and is therefore indispensable. This paper proposes a multi-objective optimization technique of microwave components with tolerance analysis. The goal is to identify a set of trade-off designs: nominal performance versus robustness (quantified by the maximum input tolerance values that allow for achieving 100-percent fabrication yield). Our approach exploits knowledge-driven regression predictors rendered using characteristic points (features) of the component's response for a rapid evaluation of statistical performance figures, along with trust-region algorithm to enable low execution cost as well as convergence. The proposed methodology is verified with the use of three microstrip circuits, a broadband filter, and two branch-line couplers (a single- and a dual-band one). It is demonstrated that a Pareto set w.r.t. nominal performance and robustness objectives can be produced using only 40 to 60 EM simulations of the respective structure (per design). Reliability of the proposed algorithm is corroborated with the use of EM-based Monte Carlo simulation.
制造公差和材料参数的不确定性,例如工作条件或衬底介电常数,会对微波元件的特性产生不利影响。了解可接受参数偏差(不导致违反设计规格)与标称性能(不考虑不确定性)之间的关系是必不可少的。本文提出了一种具有公差分析的微波元件多目标优化技术。其目标是确定一组权衡设计:标称性能与稳健性(通过允许达到 100%制造合格率的最大输入公差值来量化)。我们的方法利用了组件响应特征点(特征)生成的知识驱动回归预测器,以便快速评估统计性能指标,同时使用信赖域算法来实现低执行成本和收敛。该方法通过三个微带电路、一个宽带滤波器和两个分支线耦合器(单频和双频)进行了验证。结果表明,仅使用每个设计的 40 到 60 次电磁仿真就可以生成关于标称性能和稳健性目标的 Pareto 集。使用基于电磁的蒙特卡罗仿真验证了所提出算法的可靠性。