School of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16486-13114, Iran.
Sci Rep. 2021 Mar 29;11(1):7102. doi: 10.1038/s41598-021-86588-2.
Beyond the scope of conventional metasurface, which necessitates plenty of computational resources and time, an inverse design approach using machine learning algorithms promises an effective way for metasurface design. In this paper, benefiting from Deep Neural Network (DNN), an inverse design procedure of a metasurface in an ultra-wide working frequency band is presented in which the output unit cell structure can be directly computed by a specified design target. To reach the highest working frequency for training the DNN, we consider 8 ring-shaped patterns to generate resonant notches at a wide range of working frequencies from 4 to 45 GHz. We propose two network architectures. In one architecture, we restrict the output of the DNN, so the network can only generate the metasurface structure from the input of 8 ring-shaped patterns. This approach drastically reduces the computational time, while keeping the network's accuracy above 91%. We show that our model based on DNN can satisfactorily generate the output metasurface structure with an average accuracy of over 90% in both network architectures. Determination of the metasurface structure directly without time-consuming optimization procedures, an ultra-wide working frequency, and high average accuracy equip an inspiring platform for engineering projects without the need for complex electromagnetic theory.
超越传统超表面所需的大量计算资源和时间的范围,使用机器学习算法的逆向设计方法为超表面设计提供了一种有效的方法。在本文中,受益于深度神经网络(DNN),提出了一种在超宽工作频带中进行超表面逆向设计的方法,其中可以通过指定的设计目标直接计算出输出单元结构。为了达到训练 DNN 的最高工作频率,我们考虑了 8 个环形图案,以在 4 到 45GHz 的宽工作频率范围内产生谐振陷波。我们提出了两种网络架构。在一种架构中,我们限制 DNN 的输出,因此该网络只能从 8 个环形图案的输入中生成超表面结构。这种方法大大减少了计算时间,同时保持了网络的准确性在 91%以上。我们表明,我们基于 DNN 的模型可以令人满意地生成输出超表面结构,两种网络架构的平均准确性均超过 90%。无需耗时的优化程序、超宽工作频率和高平均准确性即可直接确定超表面结构,为无需复杂电磁理论的工程项目提供了一个鼓舞人心的平台。