National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
Sci Rep. 2023 Apr 12;13(1):5932. doi: 10.1038/s41598-023-31597-6.
Assessing the vulnerability and adaptive capacity of species, communities, and ecosystems is essential for successful conservation. Climate change, however, induces extreme uncertainty in various pathways of assessments, which hampers robust decision-making for conservation. Here, we developed a framework that allows us to quantify the level of acceptable uncertainty as a metric of ecosystem robustness, considering the uncertainty due to climate change. Under the framework, utilizing a key concept from info-gap decision theory, vulnerability is measured as the inverse of maximum acceptable uncertainty to fulfill the minimum required goal for conservation. We applied the framework to 42 natural forest ecosystems and assessed their acceptable uncertainties in terms of maintenance of species richness and forest functional type. Based on best-guess estimate of future temperature in various GCM models and RCP scenarios, and assuming that tree species survival is primarily determined by mean annual temperature, we performed simulations with increasing deviation from the best-guess temperature. Our simulations indicated that the acceptable uncertainty varied greatly among the forest plots, presumably reflecting the distribution of ecological traits and niches among species within the communities. Our framework provides acceptable uncertainty as an operational metric of ecosystem robustness under uncertainty, while incorporating both system properties and socioeconomic conditions. We argue that our framework can enhance social consensus building and decision-making in the face of the extreme uncertainty induced by global climate change.
评估物种、群落和生态系统的脆弱性和适应能力对于成功的保护至关重要。然而,气候变化在各种评估途径中引起了极大的不确定性,这阻碍了保护的稳健决策。在这里,我们开发了一个框架,允许我们将可接受的不确定性水平量化为生态系统稳健性的度量标准,同时考虑到气候变化引起的不确定性。在该框架下,我们利用信息差距决策理论的一个关键概念,将脆弱性衡量为满足保护最低要求所需的最大可接受不确定性的倒数。我们将该框架应用于 42 个自然森林生态系统,并根据物种丰富度和森林功能类型的维持情况评估了它们的可接受不确定性。基于各种 GCM 模型和 RCP 情景下未来温度的最佳猜测估计,并假设树木物种的生存主要取决于年平均温度,我们进行了模拟,模拟结果与最佳猜测温度的偏差逐渐增大。我们的模拟结果表明,不同森林样地之间的可接受不确定性差异很大,这可能反映了群落内物种之间的生态特征和生态位的分布。我们的框架提供了可接受的不确定性作为不确定性下生态系统稳健性的操作度量标准,同时纳入了系统特性和社会经济条件。我们认为,我们的框架可以在面对全球气候变化引起的极端不确定性时,增强社会共识的建立和决策。