Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA.
Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, USA.
Int J Mol Sci. 2023 Mar 29;24(7):6395. doi: 10.3390/ijms24076395.
In humans and other eukaryotes, DNA is condensed into chromatin fibers that are further wound into chromosomes. This organization allows regulatory elements in the genome, often distant from each other in the linear DNA, to interact and facilitate gene expression through regions known as topologically associating domains (TADs). CCCTC-binding factor (CTCF) is one of the major components of TAD formation and is responsible for recruiting a partner protein, cohesin, to perform loop extrusion and facilitate proper gene expression within TADs. Because single-residue CTCF mutations have been linked to the development of a variety of cancers in humans, we aim to better understand how these mutations affect the CTCF structure and its interaction with DNA. To this end, we compare all-atom molecular dynamics simulations of a wildtype CTCF-DNA complex to those of eight different cancer-linked CTCF mutant sequences. We find that most mutants have lower binding energies compared to the wildtype protein, leading to the formation of less stable complexes. Depending on the type and position of the mutation, this loss of stability can be attributed to major changes in the electrostatic potential, loss of hydrogen bonds between the CTCF and DNA, and/or destabilization of specific zinc fingers. Interestingly, certain mutations in specific fingers can affect the interaction with the DNA of other fingers, explaining why mere single mutations can impair CTCF function. Overall, these results shed mechanistic insights into experimental observations and further underscore CTCF's importance in the regulation of chromatin architecture and gene expression.
在人类和其他真核生物中,DNA 被浓缩成染色质纤维,进一步缠绕成染色体。这种组织方式允许基因组中的调控元件相互作用,而这些调控元件通常在线性 DNA 中彼此相距很远,通过称为拓扑关联域(TAD)的区域促进基因表达。CCCTC 结合因子(CTCF)是 TAD 形成的主要成分之一,负责招募伴侣蛋白黏合蛋白进行环挤出,促进 TAD 内的基因表达。由于单个残基 CTCF 突变与人类多种癌症的发生有关,我们旨在更好地了解这些突变如何影响 CTCF 结构及其与 DNA 的相互作用。为此,我们比较了野生型 CTCF-DNA 复合物的全原子分子动力学模拟和八种不同癌症相关 CTCF 突变序列的模拟。我们发现大多数突变体与野生型蛋白相比具有较低的结合能,导致形成较不稳定的复合物。根据突变的类型和位置,这种不稳定性的丧失可能归因于静电势的重大变化、CTCF 与 DNA 之间氢键的丧失,以及/或特定锌指的失稳。有趣的是,特定指状物中的某些突变会影响与其他指状物的 DNA 相互作用,解释了为什么仅仅单个突变就可以损害 CTCF 功能。总的来说,这些结果为实验观察提供了机制上的见解,并进一步强调了 CTCF 在调控染色质结构和基因表达中的重要性。