Suppr超能文献

工程化活性位点盖动力学以提高酵母胞嘧啶脱氨酶的催化效率。

Engineering the Active Site Lid Dynamics to Improve the Catalytic Efficiency of Yeast Cytosine Deaminase.

机构信息

Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Shandong Energy Institute, Qingdao 266101, China.

出版信息

Int J Mol Sci. 2023 Apr 1;24(7):6592. doi: 10.3390/ijms24076592.

Abstract

Conformational dynamics is important for enzyme catalysis. However, engineering dynamics to achieve a higher catalytic efficiency is still challenging. In this work, we develop a new strategy to improve the activity of yeast cytosine deaminase (yCD) by engineering its conformational dynamics. Specifically, we increase the dynamics of the yCD C-terminal helix, an active site lid that controls the product release. The C-terminal is extended by a dynamical single α-helix (SAH), which improves the product release rate by up to ~8-fold, and the overall catalytic rate by up to ~2-fold. It is also shown that the increase is due to the favorable activation entropy change. The NMR H/D exchange data indicate that the conformational dynamics of the transition state analog complex increases as the helix is extended, elucidating the origin of the enhanced catalytic entropy. This study highlights a novel dynamics engineering strategy that can accelerate the overall catalysis through the entropy-driven mechanism.

摘要

构象动力学对于酶催化很重要。然而,通过工程设计动力学来实现更高的催化效率仍然具有挑战性。在这项工作中,我们开发了一种新策略,通过工程设计其构象动力学来提高酵母胞嘧啶脱氨酶(yCD)的活性。具体来说,我们增加了 yCD C 末端螺旋的动力学,这是一个控制产物释放的活性位点盖。C 末端通过动态单个α-螺旋(SAH)延伸,将产物释放速率提高了约 8 倍,整体催化速率提高了约 2 倍。还表明,增加归因于有利的活化熵变化。NMR H/D 交换数据表明,随着螺旋的延伸,过渡态类似物复合物的构象动力学增加,阐明了增强催化熵的起源。这项研究强调了一种新的动力学工程策略,通过熵驱动机制可以加速整体催化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验