Suppr超能文献

酶动力学:超越单一结构的研究

Enzyme dynamics: Looking beyond a single structure.

作者信息

Agarwal Pratul K, Bernard David N, Bafna Khushboo, Doucet Nicolas

机构信息

Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma 74078.

Arium BioLabs, 2519 Caspian Drive, Knoxville, Tennessee 37932.

出版信息

ChemCatChem. 2020 Oct 6;12(19):4704-4720. doi: 10.1002/cctc.202000665. Epub 2020 Jun 26.

Abstract

Conventional understanding of how enzymes function strongly emphasizes the role of structure. However, increasing evidence clearly indicates that enzymes do not remain fixed or operate exclusively in or close to their structure. Different parts of the enzyme (from individual residues to full domains) undergo concerted motions on a wide range of time-scales, including that of the catalyzed reaction. Information obtained on these internal motions and conformational fluctuations has so far uncovered and explained many aspects of enzyme mechanisms, which could not have been understood from a single structure alone. Although there is wide interest in understanding enzyme dynamics and its role in catalysis, several challenges remain. In addition to technical difficulties, the vast majority of investigations are performed in dilute aqueous solutions, where conditions are significantly different than the cellular milieu where a large number of enzymes operate. In this review, we discuss recent developments, several challenges as well as opportunities related to this topic. The benefits of considering dynamics as an integral part of the enzyme function can also enable new means of biocatalysis, engineering enzymes for industrial and medicinal applications.

摘要

传统上对酶如何发挥功能的理解非常强调结构的作用。然而,越来越多的证据清楚地表明,酶并非保持固定不变,也并非仅在其结构内部或附近起作用。酶的不同部分(从单个残基到整个结构域)在广泛的时间尺度上进行协同运动,包括催化反应的时间尺度。到目前为止,从这些内部运动和构象波动中获得的信息揭示并解释了酶作用机制的许多方面,而仅从单一结构是无法理解这些方面的。尽管人们对理解酶动力学及其在催化中的作用有着广泛的兴趣,但仍存在一些挑战。除了技术难题外,绝大多数研究是在稀水溶液中进行的,那里的条件与大量酶发挥作用的细胞环境有很大不同。在这篇综述中,我们讨论了与该主题相关的最新进展、一些挑战以及机遇。将动力学视为酶功能不可或缺的一部分所带来的好处还可以催生新的生物催化手段,为工业和医学应用设计工程酶。

相似文献

1
Enzyme dynamics: Looking beyond a single structure.
ChemCatChem. 2020 Oct 6;12(19):4704-4720. doi: 10.1002/cctc.202000665. Epub 2020 Jun 26.
2
A Biophysical Perspective on Enzyme Catalysis.
Biochemistry. 2019 Feb 12;58(6):438-449. doi: 10.1021/acs.biochem.8b01004. Epub 2018 Dec 18.
3
Protein conformational populations and functionally relevant substates.
Acc Chem Res. 2014 Jan 21;47(1):149-56. doi: 10.1021/ar400084s. Epub 2013 Aug 29.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
Enzymes: An integrated view of structure, dynamics and function.
Microb Cell Fact. 2006 Jan 12;5:2. doi: 10.1186/1475-2859-5-2.
6
Role of protein dynamics in reaction rate enhancement by enzymes.
J Am Chem Soc. 2005 Nov 2;127(43):15248-56. doi: 10.1021/ja055251s.
7
Role of dynamics in enzyme catalysis: substantial versus semantic controversies.
Acc Chem Res. 2015 Feb 17;48(2):466-73. doi: 10.1021/ar500322s. Epub 2014 Dec 24.
8
Engineered control of enzyme structural dynamics and function.
Protein Sci. 2018 Apr;27(4):825-838. doi: 10.1002/pro.3379. Epub 2018 Feb 16.
9
Industrial applications of enzyme biocatalysis: Current status and future aspects.
Biotechnol Adv. 2015 Nov 15;33(7):1443-54. doi: 10.1016/j.biotechadv.2015.02.014. Epub 2015 Mar 6.
10
Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
Adv Protein Chem Struct Biol. 2011;85:81-142. doi: 10.1016/B978-0-12-386485-7.00003-X.

引用本文的文献

1
Enzymes in a human cytoplasm model organize into submetabolon complexes.
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2414206122. doi: 10.1073/pnas.2414206122. Epub 2025 Jan 28.
2
Enzyme ChE, cholinergic therapy and molecular docking: Significant considerations and future perspectives.
Int J Immunopathol Pharmacol. 2024 Jan-Dec;38:3946320241289013. doi: 10.1177/03946320241289013.
4
Conformational Modulation of a Mobile Loop Controls Catalysis in the (βα)-Barrel Enzyme of Histidine Biosynthesis HisF.
JACS Au. 2024 Aug 15;4(8):3258-3276. doi: 10.1021/jacsau.4c00558. eCollection 2024 Aug 26.
5
Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development.
ACS Omega. 2024 Feb 8;9(7):7393-7412. doi: 10.1021/acsomega.3c09084. eCollection 2024 Feb 20.
7
Dynamic self-assembly of supramolecular catalysts from precision macromolecules.
Chem Sci. 2023 Aug 16;14(35):9283-9292. doi: 10.1039/d3sc03133k. eCollection 2023 Sep 13.
8
Profiling Enzyme Activity of l-Asparaginase II by NMR-Based Methyl Fingerprinting at Natural Abundance.
J Am Chem Soc. 2023 May 17;145(19):10826-10838. doi: 10.1021/jacs.3c02154. Epub 2023 May 8.
10
Exploring Oxidoreductases from Extremophiles for Biosynthesis in a Non-Aqueous System.
Int J Mol Sci. 2023 Mar 29;24(7):6396. doi: 10.3390/ijms24076396.

本文引用的文献

1
Engineering Dynamic Surface Peptide Networks on Butyrylcholinesterase for Enhanced Organophosphosphorus Anticholinesterase Catalysis.
Chem Res Toxicol. 2019 Sep 16;32(9):1801-1810. doi: 10.1021/acs.chemrestox.9b00146. Epub 2019 Aug 28.
2
Review: Engineering of thermostable enzymes for industrial applications.
APL Bioeng. 2018 Jan 11;2(1):011501. doi: 10.1063/1.4997367. eCollection 2018 Mar.
3
Crowders Steal Dihydrofolate Reductase Ligands through Quinary Interactions.
Biochemistry. 2019 Mar 5;58(9):1198-1213. doi: 10.1021/acs.biochem.8b01110. Epub 2019 Feb 18.
4
5
Structural basis and mechanism of the unfolding-induced activation of HdeA, a bacterial acid response chaperone.
J Biol Chem. 2019 Mar 1;294(9):3192-3206. doi: 10.1074/jbc.RA118.006398. Epub 2018 Dec 20.
6
New Approaches to Tay-Sachs Disease Therapy.
Front Physiol. 2018 Nov 20;9:1663. doi: 10.3389/fphys.2018.01663. eCollection 2018.
7
A Biophysical Perspective on Enzyme Catalysis.
Biochemistry. 2019 Feb 12;58(6):438-449. doi: 10.1021/acs.biochem.8b01004. Epub 2018 Dec 18.
8
Determination of protein structural ensembles using cryo-electron microscopy.
Curr Opin Struct Biol. 2019 Jun;56:37-45. doi: 10.1016/j.sbi.2018.10.006. Epub 2018 Nov 28.
9
Measuring Diffusion Constants of Invisible Protein Conformers by Triple-Quantum H CPMG Relaxation Dispersion.
Angew Chem Int Ed Engl. 2018 Dec 17;57(51):16777-16780. doi: 10.1002/anie.201810868. Epub 2018 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验