Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan.
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
Int J Mol Sci. 2023 Apr 3;24(7):6659. doi: 10.3390/ijms24076659.
The ion pairs [Cs•TtX] (Tt = Pb, Sn, Ge; X = I, Br, Cl) are the building blocks of all-inorganic cesium tetrel halide perovskites in 3D, CsTtX, that are widely regarded as blockbuster materials for optoelectronic applications such as in solar cells. The 3D structures consist of an anionic inorganic tetrel halide framework stabilized by the cesium cations (Cs). We use computational methods to show that the geometrical connectivity between the inorganic monoanions, [TtX], that leads to the formation of the TtX octahedra and the 3D inorganic perovskite architecture is the result of the joint effect of polarization and coulombic forces driven by alkali and tetrel bonds. Depending on the nature and temperature phase of these perovskite systems, the Tt···X tetrel bonds are either indistinguishable or somehow distinguishable from Tt-X coordinate bonds. The calculation of the potential on the electrostatic surface of the Tt atom in molecular [Cs•TtX] provides physical insight into why the negative anions [TtX] attract each other when in close proximity, leading to the formation of the CsTtX tetrel halide perovskites in the solid state. The inter-molecular (and inter-ionic) geometries, binding energies, and charge density-based topological properties of sixteen [Cs•TtX] ion pairs, as well as some selected oligomers [Cs•PbI] ( = 2, 3, 4), are discussed.
离子对 [Cs·TtX](Tt = Pb、Sn、Ge;X = I、Br、Cl)是三维全无机铯四卤化物钙钛矿(CsTtX)的构建块,被广泛认为是用于光电应用(如太阳能电池)的突破性材料。3D 结构由阴离子无机四卤化物骨架和铯阳离子(Cs)稳定。我们使用计算方法表明,导致 TtX 八面体和 3D 无机钙钛矿结构形成的无机单价阴离子[TtX]之间的几何连通性是极化和库仑力以及碱和四卤化物键共同作用的结果。取决于这些钙钛矿系统的性质和温度相,Tt···X 四卤化物键要么无法区分,要么在某种程度上与 Tt-X 配位键区分开来。在分子[Cs·TtX]中 Tt 原子的静电表面势的计算为为什么当阴离子[TtX]接近时会相互吸引,从而导致在固态中形成 CsTtX 四卤化物钙钛矿提供了物理上的洞察力。十六个[Cs·TtX]离子对以及一些选定的低聚物[Cs·PbI](= 2、3、4)的分子间(和离子间)几何形状、结合能和基于电荷密度的拓扑性质进行了讨论。