Research Faculty of Agriculture, Hokkaido Unifversity, Sapporo 060-8589, Japan.
Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.
Molecules. 2023 Mar 30;28(7):3109. doi: 10.3390/molecules28073109.
α-Glucosidase catalyzes the hydrolysis of α-d-glucosides and transglucosylation. sp. AHU2216 α-glucosidase (BspAG13_31A), belonging to the glycoside hydrolase family 13 subfamily 31, specifically cleaves α-(1→4)-glucosidic linkages and shows high disaccharide specificity. We showed previously that the maltose moiety of maltotriose (G3) and maltotetraose (G4), covering subsites +1 and +2 of BspAG13_31A, adopts a less stable conformation than the global minimum energy conformation. This unstable d-glucosyl conformation likely arises from steric hindrance by Asn258 on β→α loop 5 of the catalytic (β/α)-barrel. In this study, Asn258 mutants of BspAG13_31A were enzymatically and structurally analyzed. N258G/P mutations significantly enhanced trisaccharide specificity. The N258P mutation also enhanced the activity toward sucrose and produced erlose from sucrose through transglucosylation. N258G showed a higher specificity to transglucosylation with -nitrophenyl α-d-glucopyranoside and maltose than the wild type. E256Q/N258G and E258Q/N258P structures in complex with G3 revealed that the maltose moiety of G3 bound at subsites +1 and +2 adopted a relaxed conformation, whereas a less stable conformation was taken in E256Q. This structural difference suggests that stabilizing the G3 conformation enhances trisaccharide specificity. The E256Q/N258G-G3 complex formed an additional hydrogen bond between Met229 and the d-glucose residue of G3 in subsite +2, and this interaction may enhance transglucosylation.
α-葡萄糖苷酶催化α-D-葡萄糖苷的水解和转糖苷作用。sp. AHU2216α-葡萄糖苷酶(BspAG13_31A)属于糖苷水解酶家族 13 亚家族 31,特异性切割α-(1→4)-糖苷键,并且具有较高的二糖特异性。我们之前表明,三糖(G3)和四糖(G4)的麦芽三糖部分覆盖 BspAG13_31A 的+1 和+2 亚基,其构象比全局最低能量构象更不稳定。这种不稳定的 d-葡萄糖构象可能是由于催化(β/α)-桶的β→α 环 5 上的天冬酰胺 258 的空间位阻所致。在这项研究中,对 BspAG13_31A 的天冬酰胺 258 突变体进行了酶学和结构分析。N258G/P 突变显著增强了三糖特异性。N258P 突变还增强了蔗糖的活性,并通过转糖苷作用从蔗糖中产生异麦芽酮糖。与野生型相比,N258G 对 -硝基苯基 α-D-吡喃葡萄糖苷和麦芽糖的转糖苷具有更高的特异性。与 G3 复合物的 E256Q/N258G 和 E258Q/N258P 结构表明,G3 的麦芽三糖部分在+1 和+2 亚基上采用了松弛的构象,而在 E256Q 中则采用了不太稳定的构象。这种结构差异表明,稳定 G3 构象可增强三糖特异性。E256Q/N258G-G3 复合物在+2 亚基中形成了与 G3 的 d-葡萄糖残基之间的额外氢键,这种相互作用可能增强转糖苷作用。