Suppr超能文献

自主车辆的高鲁棒自适应滑模轨迹跟踪控制。

Highly Robust Adaptive Sliding Mode Trajectory Tracking Control of Autonomous Vehicles.

机构信息

Department of Electrical Engineering and Computer Science, Technische Universität Berlin, 10623 Berlin, Germany.

Department of Electrical Engineering, National Ilan University, Yilan 260007, Taiwan.

出版信息

Sensors (Basel). 2023 Mar 25;23(7):3454. doi: 10.3390/s23073454.

Abstract

Autonomous driving technology has not yet been widely adopted, in part due to the challenge of achieving high-accuracy trajectory tracking in complex and hazardous driving scenarios. To this end, we proposed an adaptive sliding mode controller optimized by an improved particle swarm optimization (PSO) algorithm. Based on the improved PSO, we also proposed an enhanced grey wolf optimization (GWO) algorithm to optimize the controller. Taking the expected trajectory and vehicle speed as inputs, the proposed control scheme calculates the tracking error based on an expanded vector field guidance law and obtains the control values, including the vehicle's orientation angle and velocity on the basis of sliding mode control (SMC). To improve PSO, we proposed a three-stage update function for the inertial weight and a dynamic update law for the learning rates to avoid the local optimum dilemma. For the improvement in GWO, we were inspired by PSO and added speed and memory mechanisms to the GWO algorithm. Using the improved optimization algorithm, the control performance was successfully optimized. Moreover, Lyapunov's approach is adopted to prove the stability of the proposed control schemes. Finally, the simulation shows that the proposed control scheme is able to provide more precise response, faster convergence, and better robustness in comparison with the other widely used controllers.

摘要

自动驾驶技术尚未得到广泛应用,部分原因是在复杂和危险的驾驶场景中难以实现高精度的轨迹跟踪。为此,我们提出了一种基于改进粒子群优化(PSO)算法优化的自适应滑模控制器。基于改进的 PSO,我们还提出了一种增强型灰狼优化(GWO)算法来优化控制器。该控制方案以期望轨迹和车速为输入,基于扩展向量场制导律计算跟踪误差,并根据滑模控制(SMC)获得车辆的航向角和速度等控制值。为了改进 PSO,我们提出了一种三阶段惯性权重更新函数和学习率动态更新定律,以避免陷入局部最优困境。对于 GWO 的改进,我们从 PSO 中得到启发,为 GWO 算法添加了速度和记忆机制。使用改进的优化算法,成功地优化了控制性能。此外,采用 Lyapunov 方法证明了所提出的控制方案的稳定性。最后,仿真结果表明,与其他广泛使用的控制器相比,所提出的控制方案在响应精度、收敛速度和鲁棒性方面具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c046/10099185/53a31dff18f5/sensors-23-03454-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验