Suppr超能文献

一种具有混沌和自适应惯性权重的改进粒子群优化-灰狼优化算法用于机器人路径规划

An Improved PSO-GWO Algorithm With Chaos and Adaptive Inertial Weight for Robot Path Planning.

作者信息

Cheng Xuezhen, Li Jiming, Zheng Caiyun, Zhang Jianhui, Zhao Meng

机构信息

College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China.

State Grid Dongying District of Dongying City Power Supply Company, Dongying, China.

出版信息

Front Neurorobot. 2021 Nov 5;15:770361. doi: 10.3389/fnbot.2021.770361. eCollection 2021.

Abstract

The traditional particle swarm optimization (PSO) path planning algorithm represents each particle as a path and evolves the particles to find an optimal path. However, there are problems in premature convergence, poor global search ability, and to the ease in which particles fall into the local optimum, which could lead to the failure of fast optimal path obtainment. In order to solve these problems, this paper proposes an improved PSO combined gray wolf optimization (IPSO-GWO) algorithm with chaos and a new adaptive inertial weight. The gray wolf optimizer can sort the particles during evolution to find the particles with optimal fitness value, and lead other particles to search for the position of the particle with the optimal fitness value, which gives the PSO algorithm higher global search capability. The chaos can be used to initialize the speed and position of the particles, which can reduce the prematurity and increase the diversity of the particles. The new adaptive inertial weight is designed to improve the global search capability and convergence speed. In addition, when the algorithm falls into a local optimum, the position of the particle with the historical best fitness can be found through the chaotic sequence, which can randomly replace a particle to make it jump out of the local optimum. The proposed IPSO-GWO algorithm is first tested by function optimization using ten benchmark functions and then applied for optimal robot path planning in a simulated environment. Simulation results show that the proposed IPSO-GWO is able to find an optimal path much faster than traditional PSO-GWO based methods.

摘要

传统的粒子群优化(PSO)路径规划算法将每个粒子表示为一条路径,并通过粒子的进化来寻找最优路径。然而,该算法存在早熟收敛、全局搜索能力差以及粒子容易陷入局部最优等问题,这可能导致无法快速获得最优路径。为了解决这些问题,本文提出了一种改进的结合灰狼优化(GWO)的粒子群优化算法(IPSO-GWO),该算法引入了混沌和一种新的自适应惯性权重。灰狼优化器在进化过程中能够对粒子进行排序,找到适应度值最优的粒子,并引导其他粒子搜索该最优粒子的位置,这使得PSO算法具有更高的全局搜索能力。混沌可用于初始化粒子的速度和位置,从而减少早熟现象并增加粒子的多样性。新的自适应惯性权重旨在提高全局搜索能力和收敛速度。此外,当算法陷入局部最优时,可通过混沌序列找到历史最佳适应度粒子的位置,随机替换一个粒子使其跳出局部最优。首先使用十个基准函数对所提出的IPSO-GWO算法进行函数优化测试,然后将其应用于模拟环境中的机器人最优路径规划。仿真结果表明,所提出的IPSO-GWO算法能够比基于传统PSO-GWO的方法更快地找到最优路径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/262b/8602895/57fffbde9a80/fnbot-15-770361-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验