Suppr超能文献

一种用于室内动态环境中 RGB-D SLAM 的背景重建方法。

A Method for Reconstructing Background from RGB-D SLAM in Indoor Dynamic Environments.

机构信息

School of Electrical Engineering, Guangxi University, Nanning 530004, China.

出版信息

Sensors (Basel). 2023 Mar 28;23(7):3529. doi: 10.3390/s23073529.

Abstract

Dynamic environments are challenging for visual Simultaneous Localization and Mapping, as dynamic elements can disrupt the camera pose estimation and thus reduce the reconstructed map accuracy. To solve this problem, this study proposes an approach for eliminating dynamic elements and reconstructing static background in indoor dynamic environments. To check out dynamic elements, the geometric residual is exploited, and the static background is obtained after removing the dynamic elements and repairing images. The camera pose is estimated based on the static background. Keyframes are then selected using randomized ferns, and loop closure detection and relocalization are performed according to the keyframes set. Finally, the 3D scene is reconstructed. The proposed method is tested on the TUM and BONN datasets, and the map reconstruction accuracy is experimentally demonstrated.

摘要

动态环境对视觉同时定位与建图具有挑战性,因为动态元素会干扰相机位姿估计,从而降低重构地图的精度。针对该问题,本研究提出了一种在室内动态环境中去除动态元素并重建静态背景的方法。为了检测动态元素,利用几何残差,在去除动态元素和修复图像后得到静态背景。基于静态背景估计相机位姿。然后使用随机蕨类选择关键帧,并根据关键帧集执行闭环检测和重定位。最后,重建 3D 场景。在 TUM 和 BONN 数据集上对所提出的方法进行了测试,实验验证了地图重构的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10099189/294478233eb0/sensors-23-03529-g001.jpg

相似文献

1
A Method for Reconstructing Background from RGB-D SLAM in Indoor Dynamic Environments.
Sensors (Basel). 2023 Mar 28;23(7):3529. doi: 10.3390/s23073529.
2
DMS-SLAM: A General Visual SLAM System for Dynamic Scenes with Multiple Sensors.
Sensors (Basel). 2019 Aug 27;19(17):3714. doi: 10.3390/s19173714.
3
Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency.
IEEE Trans Vis Comput Graph. 2022 Apr;28(4):1745-1757. doi: 10.1109/TVCG.2020.3028218. Epub 2022 Feb 25.
4
A Monocular-Visual SLAM System with Semantic and Optical-Flow Fusion for Indoor Dynamic Environments.
Micromachines (Basel). 2022 Nov 17;13(11):2006. doi: 10.3390/mi13112006.
6
Semantic visual simultaneous localization and mapping (SLAM) using deep learning for dynamic scenes.
PeerJ Comput Sci. 2023 Oct 10;9:e1628. doi: 10.7717/peerj-cs.1628. eCollection 2023.
7
YPD-SLAM: A Real-Time VSLAM System for Handling Dynamic Indoor Environments.
Sensors (Basel). 2022 Nov 7;22(21):8561. doi: 10.3390/s22218561.
8
BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction.
Sensors (Basel). 2024 Jul 19;24(14):4693. doi: 10.3390/s24144693.
10
RGB-D Object SLAM Using Quadrics for Indoor Environments.
Sensors (Basel). 2020 Sep 9;20(18):5150. doi: 10.3390/s20185150.

本文引用的文献

1
A Dense Mapping Algorithm Based on Spatiotemporal Consistency.
Sensors (Basel). 2023 Feb 7;23(4):1876. doi: 10.3390/s23041876.
2
Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency.
IEEE Trans Vis Comput Graph. 2022 Apr;28(4):1745-1757. doi: 10.1109/TVCG.2020.3028218. Epub 2022 Feb 25.
3
DMS-SLAM: A General Visual SLAM System for Dynamic Scenes with Multiple Sensors.
Sensors (Basel). 2019 Aug 27;19(17):3714. doi: 10.3390/s19173714.
4
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验