Cong Peichao, Li Jiaxing, Liu Junjie, Xiao Yixuan, Zhang Xin
School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
Sensors (Basel). 2024 Mar 25;24(7):2102. doi: 10.3390/s24072102.
Simultaneous localisation and mapping (SLAM) is crucial in mobile robotics. Most visual SLAM systems assume that the environment is static. However, in real life, there are many dynamic objects, which affect the accuracy and robustness of these systems. To improve the performance of visual SLAM systems, this study proposes a dynamic visual SLAM (SEG-SLAM) system based on the orientated FAST and rotated BRIEF (ORB)-SLAM3 framework and you only look once (YOLO)v5 deep-learning method. First, based on the ORB-SLAM3 framework, the YOLOv5 deep-learning method is used to construct a fusion module for target detection and semantic segmentation. This module can effectively identify and extract prior information for obviously and potentially dynamic objects. Second, differentiated dynamic feature point rejection strategies are developed for different dynamic objects using the prior information, depth information, and epipolar geometry method. Thus, the localisation and mapping accuracy of the SEG-SLAM system is improved. Finally, the rejection results are fused with the depth information, and a static dense 3D mapping without dynamic objects is constructed using the Point Cloud Library. The SEG-SLAM system is evaluated using public TUM datasets and real-world scenarios. The proposed method is more accurate and robust than current dynamic visual SLAM algorithms.
同步定位与地图构建(SLAM)在移动机器人技术中至关重要。大多数视觉SLAM系统都假定环境是静态的。然而,在现实生活中,存在许多动态物体,这会影响这些系统的准确性和鲁棒性。为了提高视觉SLAM系统的性能,本研究提出了一种基于定向FAST和旋转BRIEF(ORB)-SLAM3框架以及你只看一次(YOLO)v5深度学习方法的动态视觉SLAM(SEG-SLAM)系统。首先,基于ORB-SLAM3框架,使用YOLOv5深度学习方法构建一个用于目标检测和语义分割的融合模块。该模块可以有效地识别和提取明显和潜在动态物体的先验信息。其次,利用先验信息、深度信息和对极几何方法,为不同的动态物体制定差异化的动态特征点剔除策略。从而提高了SEG-SLAM系统的定位和地图构建精度。最后,将剔除结果与深度信息融合,并使用点云库构建一个没有动态物体的静态密集三维地图。使用公开的TUM数据集和真实场景对SEG-SLAM系统进行了评估。所提出的方法比当前的动态视觉SLAM算法更准确、更鲁棒。