Suppr超能文献

使用深度学习的语义视觉同步定位与地图构建(SLAM)用于动态场景。

Semantic visual simultaneous localization and mapping (SLAM) using deep learning for dynamic scenes.

作者信息

Zhang Xiao Ya, Abd Rahman Abdul Hadi, Qamar Faizan

机构信息

Center for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia.

Center for Cyber Security, Universiti Kebangsaan Malaysia, Bangi, Malaysia.

出版信息

PeerJ Comput Sci. 2023 Oct 10;9:e1628. doi: 10.7717/peerj-cs.1628. eCollection 2023.

Abstract

Simultaneous localization and mapping (SLAM) is a fundamental problem in robotics and computer vision. It involves the task of a robot or an autonomous system navigating an unknown environment, simultaneously creating a map of the surroundings, and accurately estimating its position within that map. While significant progress has been made in SLAM over the years, challenges still need to be addressed. One prominent issue is robustness and accuracy in dynamic environments, which can cause uncertainties and errors in the estimation process. Traditional methods using temporal information to differentiate static and dynamic objects have limitations in accuracy and applicability. Nowadays, many research trends have leaned towards utilizing deep learning-based methods which leverage the capabilities to handle dynamic objects, semantic segmentation, and motion estimation, aiming to improve accuracy and adaptability in complex scenes. This article proposed an approach to enhance monocular visual odometry's robustness and precision in dynamic environments. An enhanced algorithm using the semantic segmentation algorithm DeeplabV3+ is used to identify dynamic objects in the image and then apply the motion consistency check to remove feature points belonging to dynamic objects. The remaining static feature points are then used for feature matching and pose estimation based on ORB-SLAM2 using the Technical University of Munich (TUM) dataset. Experimental results show that our method outperforms traditional visual odometry methods in accuracy and robustness, especially in dynamic environments. By eliminating the influence of moving objects, our method improves the accuracy and robustness of visual odometry in dynamic environments. Compared to the traditional ORB-SLAM2, the results show that the system significantly reduces the absolute trajectory error and the relative pose error in dynamic scenes. Our approach has significantly improved the accuracy and robustness of the SLAM system's pose estimation.

摘要

同时定位与地图构建(SLAM)是机器人技术和计算机视觉中的一个基本问题。它涉及机器人或自主系统在未知环境中导航的任务,同时创建周围环境的地图,并准确估计其在该地图中的位置。尽管多年来SLAM取得了重大进展,但仍有挑战需要解决。一个突出的问题是动态环境中的鲁棒性和准确性,这可能会在估计过程中导致不确定性和误差。使用时间信息来区分静态和动态物体的传统方法在准确性和适用性方面存在局限性。如今,许多研究趋势倾向于利用基于深度学习的方法,这些方法利用处理动态物体、语义分割和运动估计的能力,旨在提高复杂场景中的准确性和适应性。本文提出了一种在动态环境中增强单目视觉里程计鲁棒性和精度的方法。使用语义分割算法DeeplabV3+的增强算法用于识别图像中的动态物体,然后应用运动一致性检查来去除属于动态物体的特征点。然后,基于慕尼黑工业大学(TUM)数据集,将剩余的静态特征点用于基于ORB-SLAM2的特征匹配和位姿估计。实验结果表明,我们的方法在准确性和鲁棒性方面优于传统的视觉里程计方法,尤其是在动态环境中。通过消除移动物体的影响,我们的方法提高了动态环境中视觉里程计的准确性和鲁棒性。与传统的ORB-SLAM2相比,结果表明该系统在动态场景中显著降低了绝对轨迹误差和相对位姿误差。我们的方法显著提高了SLAM系统位姿估计的准确性和鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验