Suppr超能文献

轨迹解码中的迁移学习:传感器空间还是源空间?

Transfer Learning in Trajectory Decoding: Sensor or Source Space?

机构信息

Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria.

BioTechMed Graz, 8010 Graz, Austria.

出版信息

Sensors (Basel). 2023 Mar 30;23(7):3593. doi: 10.3390/s23073593.

Abstract

In this study, across-participant and across-session transfer learning was investigated to minimize the calibration time of the brain-computer interface (BCI) system in the context of continuous hand trajectory decoding. We reanalyzed data from a study with 10 able-bodied participants across three sessions. A leave-one-participant-out (LOPO) model was utilized as a starting model. Recursive exponentially weighted partial least squares regression (REW-PLS) was employed to overcome the memory limitation due to the large pool of training data. We considered four scenarios: generalized with no update (Gen), generalized with cumulative update (GenC), and individual models with cumulative (IndC) and non-cumulative (Ind) updates, with each one trained with sensor-space features or source-space features. The decoding performance in generalized models (Gen and GenC) was lower than the chance level. In individual models, the cumulative update (IndC) showed no significant improvement over the non-cumulative model (Ind). The performance showed the decoder's incapability to generalize across participants and sessions in this task. The results suggested that the best correlation could be achieved with the sensor-space individual model, despite additional anatomical information in the source-space features. The decoding pattern showed a more localized pattern around the precuneus over three sessions in Ind models.

摘要

在这项研究中,我们研究了跨参与者和跨会话的迁移学习,以最小化脑机接口(BCI)系统在连续手部轨迹解码背景下的校准时间。我们重新分析了来自一项涉及 10 名健康参与者的三个会话的研究的数据。使用留一参与者外(LOPO)模型作为起始模型。递归指数加权偏最小二乘回归(REW-PLS)用于克服由于训练数据量大而导致的记忆限制。我们考虑了四种情况:无更新的广义(Gen)、累积更新的广义(GenC)、累积更新的个体模型(IndC)和非累积更新的个体模型(Ind),每个模型都使用传感器空间特征或源空间特征进行训练。广义模型(Gen 和 GenC)中的解码性能低于随机水平。在个体模型中,累积更新(IndC)并没有比非累积模型(Ind)表现出显著的改善。结果表明,在这项任务中,解码器无法在参与者和会话之间进行泛化。尽管源空间特征中包含更多的解剖学信息,但传感器空间的个体模型可以实现最佳相关性。在 Ind 模型中,解码模式在三个会话中围绕楔前叶呈现出更局部的模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验