Suppr超能文献

使用 EEG 电流源偶极子在 3D 空间中重建手、肘和肩的实际和想象轨迹。

Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG current source dipoles.

机构信息

Hybrid BCI Lab, Holon Institute of Technology (HIT), Holon, Israel.

Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Beijing, People's Republic of China.

出版信息

J Neural Eng. 2021 Apr 6;18(5). doi: 10.1088/1741-2552/abf0d7.

Abstract

. Growing evidence suggests that electroencephalography (EEG) electrode (sensor) potential time series (PTS) of slow cortical potentials (SCPs) hold motor neural correlates that can be used for motion trajectory prediction, commonly by multiple linear regression (mLR). It is not yet known whether arm-joint trajectories can be reliably decoded from current sources, computed from sensor data, from which brain areas they can be decoded and using which neural features.. In this study, the PTS of 44 sensors were fed into sLORETA source localization software to compute current source activity in 30 regions of interest (ROIs) found in a recent meta-analysis to be engaged in action execution, motor imagery and motor preparation. The current sources PTS and band-power time series (BTS) in several frequency bands and time lags were used to predict actual and imagined trajectories in 3D space of the three velocity components of the hand, elbow and shoulder of nine subjects using an mLR model.. For all arm joints and movement types, current source SCPs PTS contributed most to trajectory reconstruction with time lags 150, 116 and 84 ms providing the highest contribution, and current source BTS in any of the tested frequency bands was not informative. Person's correlation coefficient () averaged across movement types, arm joints and velocity components using source data was slightly lower than using sensor data (= 0.25 and= 0.28, respectively). For each ROI, the three current source dipoles had different contribution to the reconstruction of each of the three velocity components.. Overall, our results demonstrate the feasibility of predicting of actual and imagined 3D trajectories of all arm joints from current sources, computed from scalp EEG. These findings may be used by developers of a future BCI as a validated set of contributing ROIs.

摘要

越来越多的证据表明,脑电图(EEG)电极(传感器)的慢皮层电位(SCP)的电势时间序列(PTS)包含可用于运动轨迹预测的运动神经相关信息,通常通过多元线性回归(mLR)来实现。目前还不知道是否可以从当前源中可靠地解码手臂关节轨迹,这些当前源是从传感器数据中计算出来的,从哪些脑区可以进行解码,以及使用哪些神经特征。在这项研究中,将 44 个传感器的 PTS 输入 sLORETA 源定位软件,以计算最近的元分析中发现的 30 个感兴趣区域(ROI)中的电流源活动,这些区域与动作执行、运动想象和运动准备有关。使用 mLR 模型,将当前源 PTS 和多个频带和时滞的带宽功率时间序列(BTS)用于预测九名受试者手、肘和肩三个速度分量的三维空间中的实际和想象轨迹。对于所有手臂关节和运动类型,电流源 SCPs PTS 的时间滞后为 150、116 和 84 ms 时,对轨迹重建的贡献最大,并且在任何测试频带中的电流源 BTS 都没有信息。使用源数据时,跨运动类型、手臂关节和速度分量计算的人的相关系数()平均略低于使用传感器数据时的相关系数(=0.25 和=0.28)。对于每个 ROI,三个电流源偶极子对三个速度分量中的每一个的重建都有不同的贡献。总体而言,我们的结果证明了从头皮 EEG 计算的电流源预测所有手臂关节的实际和想象的 3D 轨迹的可行性。这些发现可能被未来的脑机接口开发者用作经过验证的贡献 ROI 集合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验