Suppr超能文献

基于相干分解的地面偏振雷达在粗糙表面 ATR 的反向散射分析。

Backscattering Analysis at ATR on Rough Surfaces by Ground-Based Polarimetric Radar Using Coherent Decomposition.

机构信息

School of Cyber Physical Systems and Control, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia.

出版信息

Sensors (Basel). 2023 Mar 30;23(7):3614. doi: 10.3390/s23073614.

Abstract

This article deals with the analysis of backscattering at automatic target recognition (ATR) by ground-based radar located on rough terrain surfaces, using the properties of wave polarization. The purpose of the study is to examine and compare linear and circular polarized reflected waves, which can be described by decomposition theorems. Coherent decompositions (Pauli, Krogager, Cameron decomposition) are considered in the case of a rough terrain, for which the advantage of the Pauli decomposition has been shown. The article demonstrates an approach to the extraction of polarization signal backscattering data for two types of vehicles with different profiles. It is shown that the measurement results can be calibrated by a corner reflector that takes into account the properties of the ground surface, and further used for ATR based on supervised learning algorithms. The accuracy of object classification was 68.1% and 54.2% for the signal generated by linearly and elliptically polarized waves, respectively. Based on these results, we recommend using a linearly polarized wave as an object recognition mechanism. At the same time, any reflected depolarized wave significantly reshapes the structure due to the rotation of the object profile and the influence of a rough surface (vegetation fluctuations). This explains the low recognition accuracy in general.

摘要

本文研究了地面雷达在粗糙地形表面进行自动目标识别(ATR)时的反向散射分析,利用了波极化的特性。研究的目的是检验和比较线性和圆极化的反射波,它们可以通过分解定理来描述。在粗糙地形的情况下,考虑了相干分解(Pauli、Krogager、Cameron 分解),对于这种情况,已经证明了 Pauli 分解的优势。本文提出了一种从两种不同轮廓车辆的极化信号反向散射数据中提取信息的方法。结果表明,可以使用考虑地面特性的角反射器来校准测量结果,然后进一步基于监督学习算法用于 ATR。对于线性和椭圆极化波生成的信号,目标分类的准确率分别为 68.1%和 54.2%。基于这些结果,我们建议使用线性极化波作为目标识别机制。同时,任何去极化的反射波都会由于物体轮廓的旋转和粗糙表面(植被波动)的影响而显著改变结构,这解释了整体识别精度较低的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754b/10098711/9b4cf2812ee2/sensors-23-03614-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验