Suppr超能文献

温度和盐度对非离子表面活性剂包覆的二氧化硅纳米颗粒聚集的协同作用。

Synergistic Role of Temperature and Salinity in Aggregation of Nonionic Surfactant-Coated Silica Nanoparticles.

机构信息

Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.

Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.

出版信息

Langmuir. 2023 Apr 25;39(16):5917-5928. doi: 10.1021/acs.langmuir.3c00432. Epub 2023 Apr 13.

Abstract

The adsorption of nonionic surfactants onto hydrophilic nanoparticles (NPs) is anticipated to increase their stability in aqueous medium. While nonionic surfactants show salinity- and temperature-dependent bulk phase behavior in water, the effects of these two solvent parameters on surfactant adsorption and self-assembly onto NPs are poorly understood. In this study, we combine adsorption isotherms, dispersion transmittance, and small-angle neutron scattering (SANS) to investigate the effects of salinity and temperature on the adsorption of pentaethylene glycol monododecyl ether (CE) surfactant on silica NPs. We find an increase in the amount of surfactant adsorbed onto the NPs with increasing temperature and salinity. Based on SANS measurements and corresponding analysis using computational reverse-engineering analysis of scattering experiments (CREASE), we show that the increase in salinity and temperature results in the aggregation of silica NPs. We further demonstrate the non-monotonic changes in viscosity for the CE-silica NP mixture with increasing temperature and salinity and correlate the observations to the aggregated state of NPs. The study provides a fundamental understanding of the configuration and phase transition of the surfactant-coated NPs and presents a strategy to manipulate the viscosity of such dispersion using temperature as a stimulus.

摘要

预计非离子表面活性剂吸附到亲水性纳米粒子(NPs)上将增加它们在水介质中的稳定性。虽然非离子表面活性剂在水中表现出盐度和温度依赖的体相行为,但这两个溶剂参数对表面活性剂吸附和自组装到 NPs 上的影响还了解甚少。在这项研究中,我们结合吸附等温线、分散透射率和小角中子散射(SANS)来研究盐度和温度对五乙二醇单十二醚(CE)表面活性剂在硅胶 NPs 上吸附的影响。我们发现随着温度和盐度的升高,吸附到 NPs 上的表面活性剂的量增加。基于 SANS 测量和使用散射实验的计算反向工程分析(CREASE)的对应分析,我们表明盐度和温度的增加导致硅胶 NPs 的聚集。我们进一步证明了 CE-硅胶 NP 混合物的粘度随温度和盐度的增加而呈非单调变化,并将观察结果与 NPs 的聚集状态相关联。该研究提供了对表面活性剂包覆 NPs 的构型和相变的基本理解,并提出了一种使用温度作为刺激来操纵此类分散体粘度的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c823/10134496/8582c26093f6/la3c00432_0002.jpg

相似文献

1
Synergistic Role of Temperature and Salinity in Aggregation of Nonionic Surfactant-Coated Silica Nanoparticles.
Langmuir. 2023 Apr 25;39(16):5917-5928. doi: 10.1021/acs.langmuir.3c00432. Epub 2023 Apr 13.
3
4
Probing the adsorption of nonionic micelles on different-sized nanoparticles by scattering techniques.
Phys Rev E. 2020 Dec;102(6-1):062601. doi: 10.1103/PhysRevE.102.062601.
6
Adsorption and Catalytic Activity of Gold Nanoparticles in Mesoporous Silica: Effect of Pore Size and Dispersion Salinity.
J Phys Chem C Nanomater Interfaces. 2022 Feb 10;126(5):2531-2541. doi: 10.1021/acs.jpcc.1c09573. Epub 2022 Jan 26.
7
Charge and Film Drainage of Colliding Oil Drops Coated with the Nonionic Surfactant CE.
Langmuir. 2017 May 23;33(20):4913-4923. doi: 10.1021/acs.langmuir.6b04632. Epub 2017 May 8.
8
Structure and dynamics of nonionic surfactants adsorbed at vacuum/ionic liquid interfaces.
Langmuir. 2013 Nov 5;29(44):13379-87. doi: 10.1021/la402683j. Epub 2013 Oct 24.
9
Nanoparticle size controls aggregation in lamellar nonionic surfactant mesophase.
Langmuir. 2013 Aug 6;29(31):9643-50. doi: 10.1021/la4021977. Epub 2013 Jul 24.
10
Aggregation behavior in mixed system of double-chained anionic surfactant with single-chained nonionic surfactant in aqueous solution.
J Colloid Interface Sci. 2006 Jul 15;299(2):928-37. doi: 10.1016/j.jcis.2006.02.029. Epub 2006 Mar 20.

引用本文的文献

1
Surface Science View of Perfluoroalkyl Acids (PFAAs) in the Environment.
ACS Environ Au. 2024 Apr 30;4(4):173-185. doi: 10.1021/acsenvironau.3c00079. eCollection 2024 Jul 17.
3
Parabolic Viscosity Behavior of NaCl-Thickened Surfactant Systems upon Temperature Change.
ACS Omega. 2023 Sep 26;8(40):37511-37520. doi: 10.1021/acsomega.3c05855. eCollection 2023 Oct 10.

本文引用的文献

3
Computational Reverse-Engineering Analysis for Scattering Experiments of Assembled Binary Mixture of Nanoparticles.
ACS Mater Au. 2021 Aug 3;1(2):140-156. doi: 10.1021/acsmaterialsau.1c00015. eCollection 2021 Nov 10.
5
Influence of Temperature and Concentration on the Self-Assembly of Nonionic CE Surfactants: A Light Scattering Study.
ACS Omega. 2022 Feb 14;7(8):7057-7065. doi: 10.1021/acsomega.1c06766. eCollection 2022 Mar 1.
7
High Stability Au NPs: From Design to Application in Nanomedicine.
Int J Nanomedicine. 2021 Aug 31;16:6067-6094. doi: 10.2147/IJN.S322900. eCollection 2021.
8
Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses.
Materials (Basel). 2021 Jun 10;14(12):3197. doi: 10.3390/ma14123197.
10
Influence of Ionic Strength on Hydrophobic Interactions in Water: Dependence on Solute Size and Shape.
J Phys Chem B. 2020 Nov 19;124(46):10326-10336. doi: 10.1021/acs.jpcb.0c06399. Epub 2020 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验