Kirschbaum Thorren, von Seggern Börries, Dzubiella Joachim, Bande Annika, Noé Frank
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany.
J Chem Theory Comput. 2023 Jul 25;19(14):4461-4473. doi: 10.1021/acs.jctc.2c01275. Epub 2023 Apr 13.
Nanodiamonds have a wide range of applications including catalysis, sensing, tribology, and biomedicine. To leverage nanodiamond design via machine learning, we introduce the new data set ND5k, consisting of 5089 diamondoid and nanodiamond structures and their frontier orbital energies. ND5k structures are optimized via tight-binding density functional theory (DFTB) and their frontier orbital energies are computed using density functional theory (DFT) with the PBE0 hybrid functional. From this data set we derive a qualitative design suggestion for nanodiamonds in photocatalysis. We also compare recent machine learning models for predicting frontier orbital energies for similar structures as they have been trained on (interpolation on ND5k), and we test their abilities to extrapolate predictions to larger structures. For both the interpolation and extrapolation task, we find the best performance using the equivariant message passing neural network PaiNN. The second best results are achieved with a message passing neural network using a tailored set of atomic descriptors proposed here.
纳米金刚石有广泛的应用,包括催化、传感、摩擦学和生物医学。为了通过机器学习利用纳米金刚石设计,我们引入了新的数据集ND5k,它由5089个类金刚石和纳米金刚石结构及其前沿轨道能量组成。ND5k结构通过紧束缚密度泛函理论(DFTB)进行优化,其前沿轨道能量使用密度泛函理论(DFT)和PBE0杂化泛函进行计算。从这个数据集中,我们得出了纳米金刚石在光催化方面的定性设计建议。我们还比较了最近用于预测类似结构前沿轨道能量的机器学习模型(这些模型是在ND5k上训练的,即对ND5k进行插值),并测试了它们将预测外推到更大结构的能力。对于插值和外推任务,我们发现使用等变消息传递神经网络PaiNN性能最佳。使用这里提出的一组定制原子描述符的消息传递神经网络取得了第二好的结果。