Suppr超能文献

功能化光吸收半导体表面上共价吸附物前沿轨道能量理论

Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.

作者信息

Yu Min, Doak Peter, Tamblyn Isaac, Neaton Jeffrey B

机构信息

∥Department of Chemistry, University of California, Berkeley, California, United States.

⊥Department of Physics, University of Ontario Institute of Technology, Oshawa, Canada.

出版信息

J Phys Chem Lett. 2013 May 16;4(10):1701-6. doi: 10.1021/jz400601t. Epub 2013 May 6.

Abstract

Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.

摘要

有机分子与半导体之间的功能性混合界面是许多新兴信息和太阳能转换技术的核心。在此,我们展示了一种通用的、无经验参数的方法,用于计算和理解一大类共价键合有机半导体表面的前沿轨道能量——即氧化还原水平。我们在特定密度泛函理论(DFT)和多体微扰理论计算的背景下,在GW近似范围内,针对一个示例界面——噻吩功能化的硅(111),开发了这个框架。通过详细计算,考虑由共价连接的噻吩以及氢、氯、甲基和其他钝化基团组成的混合单层的结构和结合能,我们量化了覆盖度、非局域极化和界面偶极效应对噻吩前沿轨道能量与硅带边对齐的影响。对于噻吩吸附质前沿轨道能量,我们观察到对标准DFT有显著修正(约1 eV),包括大的非局域静电极化效应(约1.6 eV)。重要的是,这两个结果都可以从孤立噻吩分子和硅衬底系统的电子结构知识中得到合理解释。预计硅带边能量变化超过2.5 eV,而分子轨道能量保持相似,在所研究的不同官能团情况下,这表明在光电化学和其他应用中在很宽范围内调节能量对齐的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验