Suppr超能文献

通过结合机器学习分类模型和分子动力学来重新利用药物,以鉴定潜在的 OGT 抑制剂。

drug repurposing by combining machine learning classification model and molecular dynamics to identify a potential OGT inhibitor.

机构信息

Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil.

Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, RJ, Brazil.

出版信息

J Biomol Struct Dyn. 2024 Feb-Mar;42(3):1417-1428. doi: 10.1080/07391102.2023.2199868. Epub 2023 Apr 13.

Abstract

O-linked -acetylglucosamine (O-GlcNAc) is a unique intracellular post-translational glycosylation at the hydroxyl group of serine or threonine residues in nuclear, cytoplasmic and mitochondrial proteins. The enzyme O-GlcNAc transferase (OGT) is responsible for adding GlcNAc, and anomalies in this process can lead to the development of diseases associated with metabolic imbalance, such as diabetes and cancer. Repurposing approved drugs can be an attractive tool to discover new targets reducing time and costs in the drug design. This work focuses on drug repurposing to OGT targets by virtual screening of FDA-approved drugs through consensus machine learning (ML) models from an imbalanced dataset. We developed a classification model using docking scores and ligand descriptors. The SMOTE approach to resampling the dataset showed excellent statistical values in five of the seven ML algorithms to create models from the training set, with sensitivity, specificity and accuracy over 90% and Matthew's correlation coefficient greater than 0.8. The pose analysis obtained by molecular docking showed only H-bond interaction with the OGT C-Cat domain. The molecular dynamics simulation showed the lack of H-bond interactions with the C- and N-catalytic domains allowed the drug to exit the binding site. Our results showed that the non-steroidal anti-inflammatory celecoxib could be a potentially OGT inhibitor.

摘要

O-连接的-N-乙酰葡萄糖胺(O-GlcNAc)是一种独特的细胞内翻译后糖基化反应,发生在核内、细胞质和线粒体蛋白中丝氨酸或苏氨酸残基的羟基上。O-连接的-N-乙酰葡萄糖胺转移酶(OGT)负责添加 GlcNAc,该过程中的异常可能导致与代谢失衡相关的疾病的发展,如糖尿病和癌症。重新利用已批准的药物可能是发现新靶点的有吸引力的工具,可以减少药物设计的时间和成本。这项工作专注于通过使用来自不平衡数据集的共识机器学习(ML)模型对 FDA 批准的药物进行虚拟筛选,从而对 OGT 靶标进行药物再利用。我们使用对接评分和配体描述符开发了一个分类模型。数据集的 SMOTE 重采样方法在七个 ML 算法中的五个中显示出了出色的统计值,从而从训练集中创建模型,其灵敏度、特异性和准确性均超过 90%,马修斯相关系数大于 0.8。分子对接获得的构象分析仅显示与 OGT C-Cat 结构域的氢键相互作用。分子动力学模拟表明,与 C-和 N-催化结构域缺乏氢键相互作用,使药物能够离开结合位点。我们的结果表明,非甾体抗炎药塞来昔布可能是一种潜在的 OGT 抑制剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验