Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands.
Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands.
Am J Clin Nutr. 2023 Jul;118(1):151-161. doi: 10.1016/j.ajcnut.2023.04.011. Epub 2023 Apr 11.
Dicarbonyls are reactive precursors of advanced glycation end-products (AGEs). Dicarbonyls are formed endogenously, but also during food processing. Circulating dicarbonyls are positively associated with insulin resistance and type 2 diabetes, but the consequences of dietary dicarbonyls are unknown.
We aimed to examine the associations of dietary intake of dicarbonyls with insulin sensitivity, β-cell function, and the prevalence of prediabetes or type 2 diabetes.
In 6282 participants (aged 60 ± 9 y; 50% men, 23% type 2 diabetes [oversampled]) of the population-based cohort the Maastricht Study, we estimated the habitual intake of the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) using food frequency questionnaires. Insulin sensitivity (n = 2390), β-cell function (n = 2336), and glucose metabolism status (n = 6282) were measured by a 7-point oral glucose tolerance test. Insulin sensitivity was assessed as the Matsuda index. Additionally, insulin sensitivity was measured as HOMA2-IR (n = 2611). β-cell function was assessed as the C-peptidogenic index, overall insulin secretion, glucose sensitivity, potentiation factor, and rate sensitivity. Cross-sectional associations of dietary dicarbonyls with these outcomes were investigated using linear or logistic regression adjusting for age, sex, cardiometabolic risk factors, lifestyle, and dietary factors.
Higher dietary MGO and 3-DG intakes were associated with greater insulin sensitivity after full adjustment, indicated by both a higher Matsuda index (MGO: Std. β [95% CI] = 0.08 [0.04, 0.12]; 3-DG: 0.09 [0.05, 0.13]) and a lower HOMA2-IR (MGO: Std. β = -0.05 [-0.09, -0.01]; 3-DG: -0.04 [-0.08, -0.01]). Moreover, higher MGO and 3-DG intakes were associated with a lower prevalence of newly diagnosed type 2 diabetes (OR [95% CI] = 0.78 [0.65, 0.93] and 0.81 [0.66, 0.99]). There were no consistent associations of MGO, GO, and 3-DG intakes with β-cell function.
Higher habitual consumption of the dicarbonyls MGO and 3-DG was associated with better insulin sensitivity and lower prevalence of type 2 diabetes, after excluding individuals with known diabetes. These novel observations warrant further exploration in prospective cohorts and intervention studies.
双羰基化合物是糖基化终产物(AGEs)的反应前体。双羰基化合物在体内形成,但也在食品加工过程中形成。循环双羰基化合物与胰岛素抵抗和 2 型糖尿病呈正相关,但饮食双羰基化合物的后果尚不清楚。
我们旨在研究饮食中双羰基化合物的摄入量与胰岛素敏感性、β细胞功能以及糖尿病前期或 2 型糖尿病的患病率之间的关联。
在人群为基础的马斯特里赫特研究中的 6282 名参与者(年龄 60±9 岁;50%为男性,23%为 2 型糖尿病[超采样])中,我们使用食物频率问卷估计了双羰基化合物甲基乙二醛(MGO)、乙二醛(GO)和 3-脱氧葡萄糖酮(3-DG)的习惯性摄入量。通过 7 点口服葡萄糖耐量试验测量胰岛素敏感性(n=2390)、β细胞功能(n=2336)和葡萄糖代谢状态(n=6282)。胰岛素敏感性评估为 Matsuda 指数。此外,还使用 HOMA2-IR(n=2611)测量了胰岛素敏感性。β细胞功能评估为 C 肽生成指数、整体胰岛素分泌、葡萄糖敏感性、增强因子和速率敏感性。使用线性或逻辑回归调整年龄、性别、心血管代谢危险因素、生活方式和饮食因素,研究饮食双羰基化合物与这些结果的横断面关联。
在充分调整后,较高的膳食 MGO 和 3-DG 摄入量与更高的胰岛素敏感性相关,这表现为更高的 Matsuda 指数(MGO:Std. β[95%CI] = 0.08[0.04, 0.12];3-DG:0.09[0.05, 0.13])和更低的 HOMA2-IR(MGO:Std. β=-0.05[-0.09, -0.01];3-DG:-0.04[-0.08, -0.01])。此外,较高的 MGO 和 3-DG 摄入量与新诊断的 2 型糖尿病的患病率较低相关(OR[95%CI]=0.78[0.65, 0.93]和 0.81[0.66, 0.99])。MGO、GO 和 3-DG 摄入量与β细胞功能之间没有一致的关联。
在排除已知患有糖尿病的个体后,习惯性摄入较高的双羰基化合物 MGO 和 3-DG 与更好的胰岛素敏感性和较低的 2 型糖尿病患病率相关。这些新的观察结果需要在前瞻性队列研究和干预研究中进一步探索。