Reyes Yves Ira A, Yang Kai-Shiang, Thang Ho Viet, Coluccini Carmine, Chen Shih-Yuan, Chen Hsin-Yi Tiffany
Department of Engineering and System Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.
The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang, Danang 550000, Vietnam.
Faraday Discuss. 2023 Jul 19;243(0):148-163. doi: 10.1039/d2fd00172a.
N dissociative adsorption is commonly the rate-determining step in thermal ammonia synthesis. Herein, we performed density functional theory (DFT) calculations to understand the N dissociation mechanism on models of unsupported Ru(0001) terraces, Ru B5 sites, and polar MgO(111)-supported Ru cluster mimicking a B5 site geometry, denoted (Ru(B5-like)/MgO(111)). The activation energy of N dissociative adsorption on the Ru(B5-like)/MgO(111) model ( = 0.33 eV) is much lower than that on the unsupported Ru(0001) terrace ( = 1.74 eV) and Ru B5 ( = 0.62 eV) models. The lower N dissociation barrier on Ru B5 sites is facilitated by the enhanced σ donation and π* back-donation between N(σ, π*) and Ru(d) orbitals resulting in the stronger activation of the molecular side-on N* dissociation precursor. The Ru(B5-like)/MgO(111) also exhibits enhanced σ donation because of the B5-like cluster geometry. Furthermore, the Ru cluster of the bare Ru(B5-like)/MgO(111) model is positively charged. This induced an unusual π donation from N(π) to Ru(d) orbitals as revealed by analyses of the density of states and partial charge densities. The combined σ and π donation resulted in an increased synergistic π* back-donation. The total interactions between N(σ, π, π*) and Ru(d) resulted in an overall electron transfer to the adsorbed N from the Ru atoms in the B5-like site with no direct involvement of the MgO(111) substrate. Analyses of bond stretching vibrations and bond lengths show that the N(σ, π, π*) and Ru(d) interactions lead to a weaker N-N bond and stronger Ru-N bonds. These correspond to a lower barrier of N dissociation on the Ru(B5-like)/MgO(111) model, where the highest red-shift of N-N vibration and the longest N-N bond length were observed after side-on N* adsorption. These results demonstrate that an electron-deficient Ru catalyst are not always inhibited from donating electrons to adsorbed N. Rather, this study shows that the electron deficiency of Ru can promote π* back-donation and N activation. These new insights may therefore open new avenues to design supported Ru catalysts for nitrogen activation.
N解离吸附通常是热氨合成中的速率决定步骤。在此,我们进行了密度泛函理论(DFT)计算,以了解在无负载的Ru(0001)平台、Ru B5位点以及模拟B5位点几何结构的极性MgO(111)负载的Ru团簇(表示为(Ru(B5-like)/MgO(111)))模型上的N解离机制。在Ru(B5-like)/MgO(111)模型上N解离吸附的活化能(= 0.33 eV)远低于无负载的Ru(0001)平台(= 1.74 eV)和Ru B5(= 0.62 eV)模型。Ru B5位点上较低的N解离势垒得益于N(σ, π*)与Ru(d)轨道之间增强的σ给予和π反馈给予,从而导致分子侧基N解离前体的更强活化。由于类似B5团簇的几何结构,Ru(B5-like)/MgO(111)也表现出增强的σ给予。此外,裸露的Ru(B5-like)/MgO(111)模型的Ru团簇带正电荷。如态密度和部分电荷密度分析所示,这引发了从N(π)到Ru(d)轨道的异常π给予。σ和π给予的结合导致协同π反馈给予增加。N(σ, π, π)与Ru(d)之间的总相互作用导致从类似B5位点的Ru原子向吸附的N发生整体电子转移,而MgO(111)衬底没有直接参与。键伸缩振动和键长分析表明,N(σ, π, π*)与Ru(d)相互作用导致N - N键变弱,Ru - N键变强。这些对应于Ru(B5-like)/MgO(111)模型上较低的N解离势垒,在侧基N吸附后观察到N - N振动的最大红移和最长的N - N键长。这些结果表明,缺电子的Ru催化剂并不总是被抑制向吸附的N提供电子。相反,本研究表明Ru的缺电子可以促进π反馈给予和N活化。因此,这些新见解可能为设计用于氮活化的负载型Ru催化剂开辟新途径。