Weber Rebecca Z, Achón Buil Beatriz, Rentsch Nora H, Bosworth Allison, Zhang Mingzi, Kisler Kassandra, Tackenberg Christian, Rust Ruslan
Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland.
Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland.
J Neuroinflammation. 2025 Apr 18;22(1):112. doi: 10.1186/s12974-025-03437-z.
Ischemic stroke triggers a cascade of pathological events that affect multiple cell types and often lead to incomplete functional recovery. Despite advances in single-cell technologies, the molecular and cellular responses that contribute to long-term post-stroke impairment remain poorly understood. To gain better insight into the underlying mechanisms, we generated a single-cell transcriptomic atlas from distinct brain regions using a mouse model of permanent focal ischemia at one month post-injury. Our findings reveal cell- and region-specific changes within the stroke-injured and peri-infarct brain tissue. For instance, GABAergic and glutamatergic neurons exhibited upregulated genes in signaling pathways involved in axon guidance and synaptic plasticity, and downregulated pathways associated with aerobic metabolism. Using cell-cell communication analysis, we identified increased strength in predicted interactions within stroke tissue among both neural and non-neural cells via signaling pathways such as those involving collagen, protein tyrosine phosphatase receptor, neuronal growth regulator, laminin, and several cell adhesion molecules. Furthermore, we found a strong correlation between mouse transcriptome responses after stroke and those observed in human nonfatal brain stroke lesions. Common molecular features were linked to inflammatory responses, extracellular matrix organization, and angiogenesis. Our findings provide a detailed resource for advancing our molecular understanding of stroke pathology and for discovering therapeutic targets in the repair phase of stroke recovery.
缺血性中风引发一系列病理事件,这些事件会影响多种细胞类型,并常常导致功能恢复不完全。尽管单细胞技术取得了进展,但对导致中风后长期功能障碍的分子和细胞反应仍知之甚少。为了更好地了解潜在机制,我们使用永久性局灶性缺血小鼠模型,在损伤后一个月从不同脑区生成了单细胞转录组图谱。我们的研究结果揭示了中风损伤和梗死周围脑组织内细胞和区域特异性的变化。例如,GABA能和谷氨酸能神经元在轴突导向和突触可塑性相关的信号通路中表现出基因上调,而与有氧代谢相关的通路则下调。通过细胞间通讯分析,我们发现中风组织内神经细胞和非神经细胞之间通过涉及胶原蛋白、蛋白酪氨酸磷酸酶受体、神经生长调节因子、层粘连蛋白和几种细胞粘附分子等信号通路的预测相互作用强度增加。此外,我们发现中风后小鼠转录组反应与人类非致命性脑中风病变中观察到的反应之间存在很强的相关性。常见的分子特征与炎症反应、细胞外基质组织和血管生成有关。我们的研究结果为推进我们对中风病理学的分子理解以及在中风恢复修复阶段发现治疗靶点提供了详细的资源。
J Neuroinflammation. 2025-4-18
Acta Neuropathol Commun. 2019-2-5
Proc Natl Acad Sci U S A. 2020-2-12
Stem Cell Reports. 2025-6-10
Brain. 2025-7-7
Brain. 2024-10-3
Neuroimage. 2024-2-15
J Cereb Blood Flow Metab. 2024-6
J Neuroinflammation. 2023-10-10