Suppr超能文献

开发和验证用于预测医院药物短缺风险的列线图:一个预测模型。

Development and validation of the nomogram to predict the risk of hospital drug shortages: A prediction model.

机构信息

Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.

出版信息

PLoS One. 2023 Apr 14;18(4):e0284528. doi: 10.1371/journal.pone.0284528. eCollection 2023.

Abstract

INTRODUCTION

Reasons for drug shortages are multi-factorial, and patients are greatly injured. So we needed to reduce the frequency and risk of drug shortages in hospitals. At present, the risk of drug shortages in medical institutions rarely used prediction models. To this end, we attempted to proactively predict the risk of drug shortages in hospital drug procurement to make further decisions or implement interventions.

OBJECTIVES

The aim of this study is to establish a nomogram to show the risk of drug shortages.

METHODS

We collated data obtained using the centralized procurement platform of Hebei Province and defined independent and dependent variables to be included in the model. The data were divided into a training set and a validation set according to 7:3. Univariate and multivariate logistic regression were used to determine independent risk factors, and discrimination (using the receiver operating characteristic curve), calibration (Hosmer-Lemeshow test), and decision curve analysis were validated.

RESULTS

As a result, volume-based procurement, therapeutic class, dosage form, distribution firm, take orders, order date, and unit price were regarded as independent risk factors for drug shortages. In the training (AUC = 0.707) and validation (AUC = 0.688) sets, the nomogram exhibited a sufficient level of discrimination.

CONCLUSIONS

The model can predict the risk of drug shortages in the hospital drug purchase process. The application of this model will help optimize the management of drug shortages in hospitals.

摘要

简介

药物短缺的原因是多方面的,患者会受到极大的伤害。因此,我们需要降低医院药物短缺的频率和风险。目前,医疗机构药物短缺风险很少使用预测模型。为此,我们试图主动预测医院药物采购中的药物短缺风险,以便做出进一步的决策或实施干预措施。

目的

本研究旨在建立一个列线图来显示药物短缺的风险。

方法

我们整理了河北省集中采购平台获得的数据,并定义了独立和因变量纳入模型。根据 7:3 将数据分为训练集和验证集。使用单变量和多变量逻辑回归来确定独立的风险因素,并进行区分度(使用接收者操作特征曲线)、校准(Hosmer-Lemeshow 检验)和决策曲线分析验证。

结果

结果表明,基于体积的采购、治疗类别、剂型、配送公司、下订单、订单日期和单价被视为药物短缺的独立风险因素。在训练集(AUC=0.707)和验证集(AUC=0.688)中,列线图表现出足够的区分度。

结论

该模型可预测医院药物采购过程中的药物短缺风险。该模型的应用将有助于优化医院药物短缺的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e82/10104339/17d9b95d3293/pone.0284528.g001.jpg

相似文献

1
Development and validation of the nomogram to predict the risk of hospital drug shortages: A prediction model.
PLoS One. 2023 Apr 14;18(4):e0284528. doi: 10.1371/journal.pone.0284528. eCollection 2023.
3
Nomogram Prediction for the Risk of Diabetic Foot in Patients With Type 2 Diabetes Mellitus.
Front Endocrinol (Lausanne). 2022 Jul 13;13:890057. doi: 10.3389/fendo.2022.890057. eCollection 2022.
4
An interactive nomogram to predict healthcare-associated infections in ICU patients: A multicenter study in GuiZhou Province, China.
PLoS One. 2019 Jul 15;14(7):e0219456. doi: 10.1371/journal.pone.0219456. eCollection 2019.
6
Development and validation of a nomogram to predict the risk of peripheral artery disease in patients with type 2 diabetes mellitus.
Front Endocrinol (Lausanne). 2022 Dec 12;13:1059753. doi: 10.3389/fendo.2022.1059753. eCollection 2022.
8
Development and Validation of a Nomogram for Predicting Sarcopenia in Community-Dwelling Older Adults.
J Am Med Dir Assoc. 2022 May;23(5):715-721.e5. doi: 10.1016/j.jamda.2021.11.023. Epub 2021 Dec 20.
9
[Risk factor analysis on body mass rebound after laparoscopic sleeve gastrectomy and establishment of a nomogram prediction model].
Zhonghua Wei Chang Wai Ke Za Zhi. 2022 Oct 25;25(10):913-920. doi: 10.3760/cma.j.cn441530-20220418-00159.
10
A novel nomogram predicting the risk of postoperative pneumonia for esophageal cancer patients after minimally invasive esophagectomy.
Surg Endosc. 2022 Nov;36(11):8144-8153. doi: 10.1007/s00464-022-09249-z. Epub 2022 Apr 20.

本文引用的文献

3
Drug Shortage: Causes, Impact, and Mitigation Strategies.
Front Pharmacol. 2021 Jul 9;12:693426. doi: 10.3389/fphar.2021.693426. eCollection 2021.
4
Patients perspectives on drug shortages in six European hospital settings - a cross sectional study.
BMC Health Serv Res. 2021 Jul 12;21(1):689. doi: 10.1186/s12913-021-06721-9.
5
Development and validation of a predictive model to predict and manage drug shortages.
Am J Health Syst Pharm. 2021 Jul 9;78(14):1309-1316. doi: 10.1093/ajhp/zxab152.
7
Factors associated with drug shortages in Canada: a retrospective cohort study.
CMAJ Open. 2020 Aug 31;8(3):E535-E544. doi: 10.9778/cmajo.20200036. Print 2020 Jul-Sep.
8
Precision Health Analytics With Predictive Analytics and Implementation Research: JACC State-of-the-Art Review.
J Am Coll Cardiol. 2020 Jul 21;76(3):306-320. doi: 10.1016/j.jacc.2020.05.043.
10
Medicine Shortages: Gaps Between Countries and Global Perspectives.
Front Pharmacol. 2019 Jul 19;10:763. doi: 10.3389/fphar.2019.00763. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验