Suppr超能文献

基于可逆神经网络的JPEG图像鲁棒数据隐藏

Robust data hiding for JPEG images with invertible neural network.

作者信息

Shang Fei, Lan Yuhang, Yang Jianhua, Li Enping, Kang Xiangui

机构信息

Guangdong Key Laboratory of Information Security Technology, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China.

Guangdong Polytechnic Normal University, Guangzhou, China.

出版信息

Neural Netw. 2023 Jun;163:219-232. doi: 10.1016/j.neunet.2023.03.037. Epub 2023 Mar 31.

Abstract

JPEG compression will cause severe distortion to the shared compressed image, which brings great challenges to extracting messages correctly from the stego image. To address such challenges, we propose a novel end-to-end robust data hiding scheme for JPEG images. The embedding and extracting secret messages on the quantized discrete cosine transform (DCT) coefficients are implemented by the bi-directional process of the invertible neural network (INN), which can provide intrinsic robustness against lossy JPEG compression. We design a JPEG compression attack module to simulate the JPEG compression process, which helps the network automatically learn how to recover the secret message from JPEG compressed image. Experimental results have demonstrated that our method achieves strong robustness against lossy JPEG compression, and also significantly improves the security compared with the existing data hiding methods on the premise of ensuring image quality and high capacity. For example, the detection error of our method against XuNet has been increased by 3.45% over the existing data hiding methods.

摘要

JPEG压缩会对共享的压缩图像造成严重失真,这给从隐写图像中正确提取信息带来了巨大挑战。为应对此类挑战,我们提出了一种新颖的针对JPEG图像的端到端鲁棒数据隐藏方案。在量化离散余弦变换(DCT)系数上嵌入和提取秘密消息是通过可逆神经网络(INN)的双向过程实现的,这可以提供针对有损JPEG压缩的内在鲁棒性。我们设计了一个JPEG压缩攻击模块来模拟JPEG压缩过程,这有助于网络自动学习如何从JPEG压缩图像中恢复秘密消息。实验结果表明,我们的方法对有损JPEG压缩具有很强的鲁棒性,并且在确保图像质量和高容量的前提下,与现有数据隐藏方法相比,安全性也有显著提高。例如,我们的方法相对于XuNet的检测误差比现有数据隐藏方法提高了3.45%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验