Suppr超能文献

自适应物理和神经通信下的腿足机器人强健且可重复的自组织运动。

Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications.

机构信息

Neurorobotics Technology for Advanced Robot Motor Control Lab, The College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

Wearable Systems Lab, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Front Neural Circuits. 2023 Mar 31;17:1111285. doi: 10.3389/fncir.2023.1111285. eCollection 2023.

Abstract

INTRODUCTION

Animals such as cattle can achieve versatile and elegant behaviors through automatic sensorimotor coordination. Their self-organized movements convey an impression of adaptability, robustness, and motor memory. However, the adaptive mechanisms underlying such natural abilities of these animals have not been completely realized in artificial legged systems.

METHODS

Hence, we propose adaptive neural control that can mimic these abilities through adaptive physical and neural communications. The control algorithm consists of distributed local central pattern generator (CPG)-based neural circuits for generating basic leg movements, an adaptive sensory feedback mechanism for generating self-organized phase relationships among the local CPG circuits, and an adaptive neural coupling mechanism for transferring and storing the formed phase relationships (a gait pattern) into the neural structure. The adaptive neural control was evaluated in experiments using a quadruped robot.

RESULTS

The adaptive neural control enabled the robot to 1) rapidly and automatically form its gait (i.e., self-organized locomotion) within a few seconds, 2) memorize the gait for later recovery, and 3) robustly walk, even when a sensory feedback malfunction occurs. It also enabled maneuverability, with the robot being able to change its walking speed and direction. Moreover, implementing adaptive physical and neural communications provided an opportunity for understanding the mechanism of motor memory formation.

DISCUSSION

Overall, this study demonstrates that the integration of the two forms of communications through adaptive neural control is a powerful way to achieve robust and reusable self-organized locomotion in legged robots.

摘要

简介

牛等动物可以通过自动感觉运动协调来实现多样而优雅的行为。它们自发组织的运动给人一种适应性强、稳健和运动记忆的印象。然而,这些动物的自然能力背后的适应机制在人工腿部系统中尚未完全实现。

方法

因此,我们提出了自适应神经控制,通过自适应的物理和神经通信来模拟这些能力。控制算法由分布式局部中央模式发生器(CPG)为基础的神经网络电路组成,用于生成基本腿部运动;自适应的感觉反馈机制用于生成局部 CPG 电路之间的自组织相位关系;以及自适应的神经耦合机制,用于将形成的相位关系(步态模式)转移和存储到神经结构中。自适应神经控制在四足机器人实验中进行了评估。

结果

自适应神经控制使机器人能够 1)在几秒钟内快速自动形成步态(即自组织运动),2)记忆步态以备后用,以及 3)即使感觉反馈出现故障,也能稳健地行走。它还使机器人具有机动性,能够改变其行走速度和方向。此外,实施自适应的物理和神经通信为理解运动记忆形成的机制提供了机会。

讨论

总的来说,这项研究表明,通过自适应神经控制整合这两种形式的通信是实现腿部机器人稳健且可重复使用的自组织运动的有力方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f3/10102392/a47f6108936e/fncir-17-1111285-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验