Bunt Harry, Petukhova Volha
Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands.
Spoken Language Systems Group, Saarland University, Saarbrücken, Germany.
Front Artif Intell. 2023 Mar 30;6:896729. doi: 10.3389/frai.2023.896729. eCollection 2023.
For a conversational agent, to display intelligent interactive behavior implies the ability to respond to the user's intentions and expectations with correct, consistent and relevant actions with appropriate form and content in a timely fashion. In this paper, we present a data-driven analytical approach to embed intelligence into a conversational AI agent. The method requires a certain amount of (ideally) authentic conversational data, which is transformed in a meaningful way to support intelligent dialog modeling and the design of intelligent conversational agents. These transformations rely on the ISO 24617-2 dialog act annotation standard, and are specified in the Dialogue Act Markup Language (DiAML), extended with plug-ins for articulate representations of domain-specific semantic content and customized communicative functionality. ISO 24617-2 is shown to enable systematic in-depth interaction analysis and to facilitate the collection of conversational data of sufficient quality and quantity of instances of interaction phenomena. The paper provides the theoretical and methodological background of extending the ISO standard and DiAML specifications for use in interaction analysis and conversational AI agent design. The expert-assisted design methodology is introduced, with example applications in the healthcare domain, and is validated in human-agent conversational data collection experiments.
对于一个对话智能体而言,展现智能交互行为意味着能够及时以正确、一致且相关的行动,通过恰当的形式和内容来回应用户的意图和期望。在本文中,我们提出一种数据驱动的分析方法,将智能融入对话式人工智能智能体。该方法需要一定量(理想情况下是)真实的对话数据,这些数据会以有意义的方式进行转换,以支持智能对话建模和智能对话智能体的设计。这些转换依赖于ISO 24617-2对话行为标注标准,并在对话行为标记语言(DiAML)中进行规定,通过插件进行扩展,以便清晰地表示特定领域的语义内容和定制的交际功能。结果表明,ISO 24617-2能够实现系统的深度交互分析,并有助于收集具有足够质量和数量的交互现象实例的对话数据。本文提供了扩展ISO标准和DiAML规范以用于交互分析和对话式人工智能智能体设计的理论和方法背景。介绍了专家辅助设计方法,并在医疗保健领域给出了示例应用,且在人机对话数据收集实验中得到了验证。