Suppr超能文献

基于血培养细菌聚类的真实世界证据进行的预后评估:脓毒症预防与管理的新策略及展望

A prognostic assessment predicated by blood culture-based bacteria clustering from real-world evidence: Novel strategies and perspectives on prevention and management of sepsis.

作者信息

Xu Shaokang, Cai Jizhen, Doomi Ahmed, Shi Jian

机构信息

Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.

Miller School of Medicine, University of Miami, Miami, FL, United States.

出版信息

Front Mol Biosci. 2023 Mar 30;10:1160146. doi: 10.3389/fmolb.2023.1160146. eCollection 2023.

Abstract

Sepsis, a syndrome with disturbed host response to severe infection, is a critical health problem worldwide. It is urged to develop and update novel therapeutic strategies for improving the outcome of sepsis. In this study, we demonstrated that different bacteria clustering in sepsis patients may generate differences of prognosis results. We extracted all the sepsis patients from Medical Information Mart for Intensive Care IV 2.0 (MIMIC-IV 2.0) critical care data set according to certain standards and clinical score, a total of 2,339 patients were included in our study. Then we used multiple data analytics and machine learning methods to make all data deeply analyzed and elucidated. The results showed that the types of bacteria infected by patients with different ages, sex and race are different, the types of bacteria infected by patients with different SIRS values and GCS scores of the first day are different, and the severity of patients with different clusters is different, and most importantly, the survival rate of patients with different clusters also has this significant difference. We concluded prognostic assessment predicated by bacteria clustering might be a relatively potentially novel strategies and perspectives on prevention and management for sepsis in the future.

摘要

脓毒症是一种宿主对严重感染反应紊乱的综合征,是全球范围内的一个关键健康问题。迫切需要开发和更新新的治疗策略以改善脓毒症的治疗结果。在本研究中,我们证明脓毒症患者中不同的细菌聚集可能会产生预后结果的差异。我们根据特定标准和临床评分从重症监护医学信息数据库IV 2.0(MIMIC-IV 2.0)重症监护数据集提取了所有脓毒症患者,本研究共纳入2339例患者。然后我们使用多种数据分析和机器学习方法对所有数据进行深入分析和阐释。结果表明,不同年龄、性别和种族的患者感染的细菌类型不同,第一天不同全身炎症反应综合征(SIRS)值和格拉斯哥昏迷评分(GCS)评分的患者感染的细菌类型不同,不同聚类患者的严重程度不同,最重要的是,不同聚类患者的生存率也存在显著差异。我们得出结论,基于细菌聚类的预后评估可能是未来脓毒症预防和管理中一种相对新颖的潜在策略和观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae1/10098072/c6f560dfbdda/fmolb-10-1160146-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验