Intelligent Data Science and Artificial Intelligence (IDEAI) Research Center, Universitat Politècnica de Catalunya, C. Jordi Girona, 1-3, 08034, Barcelona, Spain.
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.
Biomed Eng Online. 2018 Nov 20;17(Suppl 1):135. doi: 10.1186/s12938-018-0569-2.
Like other scientific fields, such as cosmology, high-energy physics, or even the life sciences, medicine and healthcare face the challenge of an extremely quick transformation into data-driven sciences. This challenge entails the daunting task of extracting usable knowledge from these data using algorithmic methods. In the medical context this may for instance realized through the design of medical decision support systems for diagnosis, prognosis and patient management. The intensive care unit (ICU), and by extension the whole area of critical care, is becoming one of the most data-driven clinical environments.
The increasing availability of complex and heterogeneous data at the point of patient attention in critical care environments makes the development of fresh approaches to data analysis almost compulsory. Computational Intelligence (CI) and Machine Learning (ML) methods can provide such approaches and have already shown their usefulness in addressing problems in this context. The current study has a dual goal: it is first a review of the state-of-the-art on the use and application of such methods in the field of critical care. Such review is presented from the viewpoint of the different subfields of critical care, but also from the viewpoint of the different available ML and CI techniques. The second goal is presenting a collection of results that illustrate the breath of possibilities opened by ML and CI methods using a single problem, the investigation of septic shock at the ICU.
We have presented a structured state-of-the-art that illustrates the broad-ranging ways in which ML and CI methods can make a difference in problems affecting the manifold areas of critical care. The potential of ML and CI has been illustrated in detail through an example concerning the sepsis pathology. The new definitions of sepsis and the relevance of using the systemic inflammatory response syndrome (SIRS) in its diagnosis have been considered. Conditional independence models have been used to address this problem, showing that SIRS depends on both organ dysfunction measured through the Sequential Organ Failure (SOFA) score and the ICU outcome, thus concluding that SIRS should still be considered in the study of the pathophysiology of Sepsis. Current assessment of the risk of dead at the ICU lacks specificity. ML and CI techniques are shown to improve the assessment using both indicators already in place and other clinical variables that are routinely measured. Kernel methods in particular are shown to provide the best performance balance while being amenable to representation through graphical models, which increases their interpretability and, with it, their likelihood to be accepted in medical practice.
与宇宙学、高能物理甚至生命科学等其他科学领域一样,医学和医疗保健也面临着向数据驱动科学快速转型的挑战。这一挑战需要使用算法方法从这些数据中提取可用知识,这是一项艰巨的任务。在医学领域,这可以通过设计用于诊断、预后和患者管理的医学决策支持系统来实现。重症监护病房(ICU),以及整个重症监护领域,正成为最具数据驱动性的临床环境之一。
在重症监护环境中,患者关注点的复杂和异构数据的日益可用性使得开发新的数据分析方法几乎成为必要。计算智能(CI)和机器学习(ML)方法可以提供这样的方法,并且已经在解决该领域的问题方面显示出了它们的有用性。本研究有两个目标:首先是审查这些方法在重症监护领域的使用和应用的最新进展。该综述从重症监护的不同子领域的角度,以及从不同可用的 ML 和 CI 技术的角度进行介绍。第二个目标是展示一组结果,通过一个问题(ICU 中的脓毒症休克研究)来说明 ML 和 CI 方法所开辟的可能性范围。
我们提出了一个结构化的最新进展,说明了 ML 和 CI 方法在影响重症监护多方面领域的问题上可以产生重大影响的广泛途径。通过一个关于脓毒症病理的示例,详细说明了 ML 和 CI 的潜力。已经考虑了新的脓毒症定义以及在其诊断中使用全身炎症反应综合征(SIRS)的相关性。条件独立性模型已被用于解决这个问题,表明 SIRS 既取决于通过序贯器官衰竭(SOFA)评分测量的器官功能障碍,也取决于 ICU 结局,因此得出结论,在脓毒症的病理生理学研究中仍然应该考虑 SIRS。目前对 ICU 死亡风险的评估缺乏特异性。ML 和 CI 技术已被证明可以通过使用已经存在的指标和其他常规测量的临床变量来改善评估。核方法尤其显示出了最佳的性能平衡,同时易于通过图形模型表示,这提高了它们的可解释性,从而增加了它们在医学实践中被接受的可能性。