Suppr超能文献

一种快速的机器学习引导的引物设计管道,用于选择性的全基因组扩增。

A fast machine-learning-guided primer design pipeline for selective whole genome amplification.

机构信息

Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America.

Facebook AI Research, 1 Rathbone Square, London, England.

出版信息

PLoS Comput Biol. 2023 Apr 17;19(4):e1010137. doi: 10.1371/journal.pcbi.1010137. eCollection 2023 Apr.

Abstract

Addressing many of the major outstanding questions in the fields of microbial evolution and pathogenesis will require analyses of populations of microbial genomes. Although population genomic studies provide the analytical resolution to investigate evolutionary and mechanistic processes at fine spatial and temporal scales-precisely the scales at which these processes occur-microbial population genomic research is currently hindered by the practicalities of obtaining sufficient quantities of the relatively pure microbial genomic DNA necessary for next-generation sequencing. Here we present swga2.0, an optimized and parallelized pipeline to design selective whole genome amplification (SWGA) primer sets. Unlike previous methods, swga2.0 incorporates active and machine learning methods to evaluate the amplification efficacy of individual primers and primer sets. Additionally, swga2.0 optimizes primer set search and evaluation strategies, including parallelization at each stage of the pipeline, to dramatically decrease program runtime. Here we describe the swga2.0 pipeline, including the empirical data used to identify primer and primer set characteristics, that improve amplification performance. Additionally, we evaluate the novel swga2.0 pipeline by designing primer sets that successfully amplify Prevotella melaninogenica, an important component of the lung microbiome in cystic fibrosis patients, from samples dominated by human DNA.

摘要

解决微生物进化和发病机制领域的许多重大悬而未决的问题,需要对微生物基因组群体进行分析。尽管群体基因组研究为在精细的时空尺度上研究进化和机制过程提供了分析分辨率——这些过程正是在这些尺度上发生的——但微生物群体基因组研究目前受到获取足够数量的下一世代测序所需的相对纯净的微生物基因组 DNA 的实际情况的限制。在这里,我们提出了 swga2.0,这是一个经过优化和并行化的设计选择性全基因组扩增 (SWGA) 引物集的管道。与以前的方法不同,swga2.0 采用主动和机器学习方法来评估单个引物和引物集的扩增效果。此外,swga2.0 优化了引物集搜索和评估策略,包括在管道的每个阶段进行并行化,从而大大缩短了程序运行时间。在这里,我们描述了 swga2.0 管道,包括用于识别提高扩增性能的引物和引物集特征的经验数据。此外,我们通过设计成功从以人类 DNA 为主的样本中扩增出囊性纤维化患者肺部微生物组中重要成分普雷沃氏菌属黑色素生成菌的引物集,对新型 swga2.0 管道进行了评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82cd/10138271/cf75ade9db8d/pcbi.1010137.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验