State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
University of the Chinese Academy of Sciences, Beijing 100049, China.
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2302448120. doi: 10.1073/pnas.2302448120. Epub 2023 Apr 17.
The tropane alkaloids (TAs) cocaine and hyoscyamine have been used medicinally for thousands of years. To understand the evolutionary origins and trajectories of serial biosynthetic enzymes of TAs and especially the characteristic tropane skeletons, we generated the chromosome-level genome assemblies of cocaine-producing (Erythroxylaceae, rosids clade) and hyoscyamine-producing (Solanaceae, asterids clade). Comparative genomic and phylogenetic analysis suggested that the lack of spermidine synthase/-methyltransferase (SPMT1) in ancestral asterids species contributed to the divergence of polyamine (spermidine or putrescine) methylation in cocaine and hyoscyamine biosynthesis. Molecular docking analysis and key site mutation experiments suggested that ecgonone synthases CYP81AN15 and CYP82M3 adopt different active-site architectures to biosynthesize the same product ecgonone from the same substrate in Erythroxylaceae and Solanaceae. Further synteny analysis showed different evolutionary origins and trajectories of CYP81AN15 and CYP82M3, particularly the emergence of through the neofunctionalization of ancient tandem duplication genes. The combination of structural biology and comparative genomic analysis revealed that ecgonone methyltransferase, which is responsible for the biosynthesis of characteristic 2-substituted carboxymethyl group in cocaine, evolved from the tandem copies of salicylic acid methyltransferase by the mutations of critical E216 and S153 residues. Overall, we provided strong evidence for the independent origins of serial TA biosynthetic enzymes on the genomic and structural level, underlying the chemotypic convergence of TAs in phylogenetically distant species.
托烷生物碱(TAs)可卡因和莨菪碱已被用于医学治疗数千年。为了了解 TAs 系列生物合成酶的进化起源和轨迹,特别是典型的托烷骨架,我们生成了产可卡因的(茄科,蔷薇目)和产莨菪碱的(茄科,菊目)染色体水平基因组组装。比较基因组和系统发育分析表明,在祖先的菊目物种中缺乏亚精胺合酶/-甲基转移酶(SPMT1)导致可卡因和莨菪碱生物合成中多胺(亚精胺或腐胺)甲基化的分化。分子对接分析和关键位点突变实验表明,茄科和茄科中的 ecgonone 合酶 CYP81AN15 和 CYP82M3 采用不同的活性位点结构来从相同的底物合成相同的产物 ecgonone。进一步的同线性分析表明 CYP81AN15 和 CYP82M3 的进化起源和轨迹不同,特别是通过古老串联重复基因的新功能化出现了。结构生物学和比较基因组分析的结合表明,负责可卡因中特征性 2-取代羧甲基基团生物合成的 ecgonone 甲基转移酶是通过关键残基 E216 和 S153 的突变从水杨酸甲基转移酶的串联拷贝中进化而来的。总的来说,我们从基因组和结构水平为系列 TA 生物合成酶的独立起源提供了有力证据,为系统发育上不同的物种中 TAs 的化学型趋同提供了依据。