Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
Methods. 2023 Jun;214:8-17. doi: 10.1016/j.ymeth.2023.04.004. Epub 2023 Apr 15.
Disulfide bonds drive protein correct folding, prevent protein aggregation, and stabilize three-dimensional structures of proteins and their assemblies. Dysregulation of this activity leads to several disorders, including cancer, neurodegeneration, and thrombosis. A family of 20+ enzymes, called thiol-isomerases (TIs), oversee this process in the endoplasmic reticulum of human cells to ensure efficacy and accuracy. While the biophysical and biochemical properties of cysteine residues are well-defined, our structural knowledge of how TIs select, interact and process their substrates remains poorly understood. How TIs structurally and functionally respond to changes in redox environment and other post-translational modifications remain unclear, too. We recently developed a workflow for site-specific incorporation of non-canonical amino acids into protein disulfide isomerase (PDI), the prototypical member of TIs. Combined with click chemistry, this strategy enabled us to perform single-molecule biophysical studies of PDI under various solution conditions. This paper details protocols and discusses challenges in performing these experiments. We expect this approach, combined with other emerging technologies in single-molecule biophysics and structural biology, to facilitate the exploration of the mechanisms by which TIs carry out their fascinating but poorly understood roles in humans, especially in the context of thrombosis.
二硫键驱动蛋白质正确折叠,防止蛋白质聚集,并稳定蛋白质及其复合物的三维结构。这种活性的失调会导致多种疾病,包括癌症、神经退行性疾病和血栓形成。一类 20 多种酶,称为巯基异构酶(TIs),在人类细胞的内质网中监督这个过程,以确保其效力和准确性。虽然半胱氨酸残基的生物物理和生化性质已经得到很好的定义,但我们对 TIs 如何选择、相互作用和处理其底物的结构知识仍然知之甚少。TIs 如何在氧化还原环境和其他翻译后修饰发生变化时在结构和功能上做出响应,这一点也不清楚。我们最近开发了一种将非天然氨基酸特异性掺入蛋白质二硫键异构酶(PDI)的工作流程,PDI 是 TIs 的典型成员。结合点击化学,这种策略使我们能够在各种溶液条件下对 PDI 进行单分子生物物理研究。本文详细介绍了这些实验的方案和讨论了其中的挑战。我们预计,这种方法结合单分子生物物理学和结构生物学中其他新兴技术,将有助于探索 TIs 在人类中发挥其迷人但知之甚少的作用的机制,特别是在血栓形成方面。