Suppr超能文献

微纳尺度电化学增材制造初学者指南。

Beginner's Guide to Micro- and Nanoscale Electrochemical Additive Manufacturing.

机构信息

Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.

Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany; email:

出版信息

Annu Rev Anal Chem (Palo Alto Calif). 2023 Jun 14;16(1):71-91. doi: 10.1146/annurev-anchem-091522-122334. Epub 2023 Apr 17.

Abstract

Electrochemical additive manufacturing is an advanced microfabrication technology capable of producing features of almost unlimited geometrical complexity. A unique combination of the capacity to process conductive materials, design freedom, and micro- to nanoscale resolution offered by these electrochemical techniques promises tremendous opportunities for a multitude of future applications spanning microelectronics, sensing, robotics, and energy storage. This review aims to equip readers with the basic principles of electrochemical 3D printing at the small length scale. By describing the basic principles of electrochemical additive manufacturing technology and using the recent advances in the field, this beginner's guide illustrates how controlling the fundamental phenomena that underpin the print process can be used to vary dimensions, morphology, and microstructure of printed structures.

摘要

电化学添加剂制造是一种先进的微制造技术,能够生产具有几乎无限几何复杂性的特征。这些电化学技术具有加工导电材料的能力、设计自由度以及微到纳米尺度分辨率的独特组合,为微电子学、传感、机器人技术和储能等众多未来应用提供了巨大的机会。本综述旨在为读者提供在小尺寸范围内电化学 3D 打印的基本原理。通过描述电化学添加剂制造技术的基本原理并利用该领域的最新进展,本入门指南说明了如何控制构成打印过程基础的基本现象,从而可以改变打印结构的尺寸、形态和微观结构。

相似文献

1
Beginner's Guide to Micro- and Nanoscale Electrochemical Additive Manufacturing.
Annu Rev Anal Chem (Palo Alto Calif). 2023 Jun 14;16(1):71-91. doi: 10.1146/annurev-anchem-091522-122334. Epub 2023 Apr 17.
2
Bringing Electrochemical Three-Dimensional Printing to the Nanoscale.
Nano Lett. 2021 Nov 10;21(21):9093-9101. doi: 10.1021/acs.nanolett.1c02847. Epub 2021 Oct 26.
3
Microstructure-driven electrical conductivity optimization in additively manufactured microscale copper interconnects.
RSC Adv. 2023 May 3;13(20):13575-13585. doi: 10.1039/d3ra00611e. eCollection 2023 May 2.
4
On the Resolution Limit of Electrohydrodynamic Redox 3D Printing.
Small. 2024 Nov;20(46):e2402067. doi: 10.1002/smll.202402067. Epub 2024 Aug 2.
6
Additive-manufactured (3D-printed) electrochemical sensors: A critical review.
Anal Chim Acta. 2020 Jun 29;1118:73-91. doi: 10.1016/j.aca.2020.03.028. Epub 2020 Mar 17.
8
Additive Manufacturing for Terahertz Metamaterials on the Dielectric Surface based on Optimized Electrohydrodynamic Drop-on-demand Printing Technology.
ACS Appl Mater Interfaces. 2024 Jan 24;16(3):4222-4230. doi: 10.1021/acsami.3c15937. Epub 2024 Jan 12.
9
Multifunctional scanning ion conductance microscopy.
Proc Math Phys Eng Sci. 2017 Apr;473(2200):20160889. doi: 10.1098/rspa.2016.0889. Epub 2017 Apr 12.
10
Micro/nanoscale electrohydrodynamic printing: from 2D to 3D.
Nanoscale. 2016 Aug 25;8(34):15376-88. doi: 10.1039/c6nr04106j.

引用本文的文献

1
Droplet-Confined Electroplating for Nanoscale Additive Manufacturing: Current Control of the Initial Stages of Growth of Copper Nanowires.
ACS Electrochem. 2024 Nov 4;1(2):205-215. doi: 10.1021/acselectrochem.4c00085. eCollection 2025 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验