Menétrey Maxence, Kupferschmid Cédric, Gerstl Stephan, Spolenak Ralph
Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland.
Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Otto-Stern-Weg 3, Zürich 8093, Switzerland.
Small. 2024 Nov;20(46):e2402067. doi: 10.1002/smll.202402067. Epub 2024 Aug 2.
Additive manufacturing (AM) will empower the next breakthroughs in nanotechnology by combining unmatched geometrical freedom with nanometric resolution. Despite recent advances, no micro-AM technique has been able to synthesize functional nanostructures with excellent metal quality and sub-100 nm resolution. Here, significant breakthroughs in electrohydrodynamic redox 3D printing (EHD-RP) are reported by directly fabricating high-purity Cu (>98 at.%) with adjustable voxel size from >6µm down to 50 nm. This unique tunability of the feature size is achieved by managing in-flight solvent evaporation of the ion-loaded droplet to either trigger or prevent the Coulomb explosion. In the first case, the landing of confined droplets on the substrate allows the fabrication of high-aspect-ratio 50 nm-wide nanopillars, while in the second, droplet disintegration leads to large-area spray deposition. It is discussed that the reported pillar width corresponds to the ultimate resolution achievable by EHD printing. The unrivaled feature size and growth rate (>100 voxel s) enable the direct manufacturing of 30 µm-tall atom probe tomography (APT) tips that unveil the pristine microstructure and chemistry of the deposit. This method opens up prospects for the development of novel materials for 3D nano-printing.
增材制造(AM)将通过把无与伦比的几何自由度与纳米级分辨率相结合,推动纳米技术实现下一次突破。尽管近年来取得了进展,但尚无微增材制造技术能够合成出具有优异金属质量和低于100纳米分辨率的功能性纳米结构。在此,报道了在电流体动力氧化还原3D打印(EHD-RP)方面取得的重大突破,即通过直接制造体素尺寸可从大于6微米调节至50纳米的高纯度铜(>98原子百分比)来实现。通过控制载离子液滴在飞行过程中的溶剂蒸发,以触发或防止库仑爆炸,从而实现特征尺寸的这种独特可调性。在第一种情况下,受限液滴落在基底上可制造出高纵横比的50纳米宽纳米柱,而在第二种情况下,液滴崩解会导致大面积喷雾沉积。据讨论,所报道的柱宽对应于EHD打印可实现的极限分辨率。无与伦比的特征尺寸和生长速率(>100体素/秒)使得能够直接制造出30微米高的原子探针断层扫描(APT)尖端,从而揭示沉积物的原始微观结构和化学成分。该方法为3D纳米打印新型材料的开发开辟了前景。