Suppr超能文献

基于模糊 K-均值和 K-原型聚类方法的 COVID-19 流行病学情况调查。

An investigation into epidemiological situations of COVID-19 with fuzzy K-means and K-prototype clustering methods.

机构信息

Biostatistics Department, Faculty of Medicine, Bezmialem University, Fatih, Istanbul, Turkey.

Statistics Department, Faculty of Science, Ataturk University, Erzurum, Turkey.

出版信息

Sci Rep. 2023 Apr 17;13(1):6255. doi: 10.1038/s41598-023-33214-y.

Abstract

The ten countries with the highest population during the pandemic were analyzed for clustering based on the quantitative numbers of COVID-19 and policy plans. The Fuzzy K-Means (FKM) and K-prototype algorithms were used for clustering, and various performance indices such as Partition Coefficient (PC), Partition Entropy (PE), Xie-Beni (XB), and Silhouette Fuzzy (SIL.F) were used for evaluating the clusters. The analysis included variables such as confirmed cases, tests, vaccines, school and workplace closures, event cancellations, gathering restrictions, transport closures, stay-at-home restrictions, international movement restrictions, testing policies, facial coverings, and vaccination policy statuses. PC, PE, XB, and SIL.F indices were used to analyze the performance indices of the clusters. The Elbow method was used to analyze the performance evaluations for the K-prototype. The K-prototype algorithm's performance evaluations were analyzed using the Elbow method, and the optimum number of clusters for both methods was found to be two. The first cluster included Brazil, Mexico, Nigeria, Bangladesh, US, Indonesia, Russia, and Pakistan, while the second cluster comprised India and China. The analysis also examined the relationship between population and confirmed tests and vaccines, and standardization was made for the country with the largest population for significant correlations. The results showed that the FKM method was superior to the K-prototype method in terms of clustering. In conclusion, it is crucial to accurately evaluate COVID-19 data for countries and develop appropriate policies. The clustering analysis using the FKM and K-prototype algorithms provides valuable insights into identifying groups of countries with similar COVID-19 data and policy plans.

摘要

分析了疫情期间人口最多的十个国家,根据 COVID-19 病例数量和政策计划对这些国家进行聚类。使用了模糊 K 均值(FKM)和 K 原型算法进行聚类,并使用了各种性能指标,如划分系数(PC)、划分熵(PE)、Xie-Beni(XB)和轮廓模糊(SIL.F),来评估聚类结果。分析中包括确诊病例、检测、疫苗、学校和工作场所关闭、活动取消、聚会限制、交通关闭、居家限制、国际旅行限制、检测政策、面部遮盖物和疫苗接种政策等变量。使用 PC、PE、XB 和 SIL.F 指数分析聚类的性能指标。使用肘部法分析 K 原型的性能评估。使用肘部法分析 K 原型算法的性能评估,两种方法的最佳聚类数均为 2。第一组包括巴西、墨西哥、尼日利亚、孟加拉国、美国、印度尼西亚、俄罗斯和巴基斯坦,第二组包括印度和中国。分析还检查了人口与确诊病例和疫苗检测之间的关系,并对人口最多的国家进行了标准化,以确定显著相关的变量。结果表明,FKM 方法在聚类方面优于 K 原型方法。总之,准确评估各国的 COVID-19 数据并制定相应的政策至关重要。使用 FKM 和 K 原型算法的聚类分析为识别具有相似 COVID-19 数据和政策计划的国家群体提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f9/10110517/fa5571cf4b8d/41598_2023_33214_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验