Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
NASA Postdoctoral Program, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Glob Chang Biol. 2023 Jul;29(13):3634-3651. doi: 10.1111/gcb.16725. Epub 2023 Apr 27.
The increasing frequency and intensity of climate extremes and complex ecosystem responses motivate the need for integrated observational studies at low latency to determine biosphere responses and carbon-climate feedbacks. Here, we develop a satellite-based rapid attribution workflow and demonstrate its use at a 1-2-month latency to attribute drivers of the carbon cycle feedbacks during the 2020-2021 Western US drought and heatwave. In the first half of 2021, concurrent negative photosynthesis anomalies and large positive column CO anomalies were detected with satellites. Using a simple atmospheric mass balance approach, we estimate a surface carbon efflux anomaly of 132 TgC in June 2021, a magnitude corroborated independently with a dynamic global vegetation model. Integrated satellite observations of hydrologic processes, representing the soil-plant-atmosphere continuum (SPAC), show that these surface carbon flux anomalies are largely due to substantial reductions in photosynthesis because of a spatially widespread moisture-deficit propagation through the SPAC between 2020 and 2021. A causal model indicates deep soil moisture stores partially drove photosynthesis, maintaining its values in 2020 and driving its declines throughout 2021. The causal model also suggests legacy effects may have amplified photosynthesis deficits in 2021 beyond the direct effects of environmental forcing. The integrated, observation framework presented here provides a valuable first assessment of a biosphere extreme response and an independent testbed for improving drought propagation and mechanisms in models. The rapid identification of extreme carbon anomalies and hotspots can also aid mitigation and adaptation decisions.
气候极端事件的频率和强度不断增加,以及复杂生态系统的响应,促使我们需要进行低延迟的综合观测研究,以确定生物圈的响应和碳-气候反馈。在这里,我们开发了一种基于卫星的快速归因工作流程,并展示了其在 1-2 个月延迟下的应用,以归因于 2020-2021 年美国西部干旱和热浪期间碳循环反馈的驱动因素。在 2021 年上半年,卫星同时检测到负光合作用异常和大的柱 CO 异常。我们使用简单的大气质量平衡方法,估计 2021 年 6 月的地表碳流出异常为 132TgC,这一规模与动态全球植被模型的独立估计结果相吻合。代表土壤-植物-大气连续体 (SPAC) 的水文过程综合卫星观测表明,这些地表碳通量异常主要是由于 2020 年至 2021 年期间 SPAC 中广泛存在的水分亏缺传播导致光合作用大幅减少。因果模型表明,深层土壤湿度储存部分驱动了光合作用,使其在 2020 年保持了其值,并在 2021 年推动了其下降。因果模型还表明,遗留效应可能放大了 2021 年光合作用的不足,超出了环境胁迫的直接影响。这里提出的综合观测框架为评估生物圈极端响应提供了有价值的首次评估,也是改进模型中干旱传播和机制的独立测试平台。快速识别极端碳异常和热点也有助于缓解和适应决策。