Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710129, China.
Technology Innovation Center for Natural Ecosystem Carbon Sink, Ministry of Natural Resources, Kunming, Yunnan Province, 650111, China.
Sci Data. 2024 May 22;11(1):527. doi: 10.1038/s41597-024-03364-3.
Long-term, daily, and gap-free Normalized Difference Vegetation Index (NDVI) is of great significance for a better Earth system observation. However, gaps and contamination are quite severe in current daily NDVI datasets. This study developed a daily 0.05° gap-free NDVI dataset from 1981-2023 in China by combining valid data identification and spatiotemporal sequence gap-filling techniques based on the National Oceanic and Atmospheric Administration daily NDVI dataset. The generated NDVI in more than 99.91% of the study area showed an absolute percent bias (|PB|) smaller than 1% compared with the original valid data, with an overall R and root mean square error (RMSE) of 0.79 and 0.05, respectively. PB and RMSE between our dataset and the MODIS daily gap-filled NDVI dataset (MCD19A3CMG) during 2000 to 2023 are 7.54% and 0.1, respectively. PB between our dataset and three monthly NDVI datasets (i.e., GIMMS3g, MODIS MOD13C2, and SPOT/PROBA) are only -5.79%, 4.82%, and 2.66%, respectively. To the best of our knowledge, this is the first long-term daily gap-free NDVI in China by far.
长期、每日和无间隙归一化差异植被指数 (NDVI) 对于更好的地球系统观测具有重要意义。然而,当前的每日 NDVI 数据集存在严重的间隙和污染问题。本研究通过结合有效数据识别和时空序列间隙填充技术,利用美国国家海洋和大气管理局每日 NDVI 数据集,生成了 1981-2023 年中国每日 0.05°无间隙 NDVI 数据集。在研究区域的 99.91%以上的区域,生成的 NDVI 与原始有效数据的绝对百分比偏差 (|PB|) 小于 1%,总体 R 和均方根误差 (RMSE) 分别为 0.79 和 0.05。在 2000 年至 2023 年期间,我们的数据集与 MODIS 每日填补间隙 NDVI 数据集 (MCD19A3CMG) 之间的 PB 和 RMSE 分别为 7.54%和 0.1。我们的数据集与三个月度 NDVI 数据集(即 GIMMS3g、MODIS MOD13C2 和 SPOT/PROBA)之间的 PB 仅分别为-5.79%、4.82%和 2.66%。据我们所知,这是迄今为止中国第一个长期每日无间隙 NDVI。