Department of Radiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.
Department of Radiology and Nuclear Medicine, Erasmus MC, BIGR - Na 26-20, Doctor Molewaterplein 40, 3015 GD, Rotterdam, Netherlands.
Eur Radiol. 2023 Oct;33(10):6718-6725. doi: 10.1007/s00330-023-09615-y. Epub 2023 Apr 18.
Computed tomography (CT)-based bronchial parameters correlate with disease status. Segmentation and measurement of the bronchial lumen and walls usually require significant manpower. We evaluate the reproducibility of a deep learning and optimal-surface graph-cut method to automatically segment the airway lumen and wall, and calculate bronchial parameters.
A deep-learning airway segmentation model was newly trained on 24 Imaging in Lifelines (ImaLife) low-dose chest CT scans. This model was combined with an optimal-surface graph-cut for airway wall segmentation. These tools were used to calculate bronchial parameters in CT scans of 188 ImaLife participants with two scans an average of 3 months apart. Bronchial parameters were compared for reproducibility assessment, assuming no change between scans.
Of 376 CT scans, 374 (99%) were successfully measured. Segmented airway trees contained a mean of 10 generations and 250 branches. The coefficient of determination (R) for the luminal area (LA) ranged from 0.93 at the trachea to 0.68 at the 6 generation, decreasing to 0.51 at the 8 generation. Corresponding values for Wall Area Percentage (WAP) were 0.86, 0.67, and 0.42, respectively. Bland-Altman analysis of LA and WAP per generation demonstrated mean differences close to 0; limits of agreement (LoA) were narrow for WAP and Pi10 (± 3.7% of mean) and wider for LA (± 16.4-22.8% for 2-6 generations). From the 7 generation onwards, there was a sharp decrease in reproducibility and a widening LoA.
The outlined approach for automatic bronchial parameter measurement on low-dose chest CT scans is a reliable way to assess the airway tree down to the 6 generation.
This reliable and fully automatic pipeline for bronchial parameter measurement on low-dose CT scans has potential applications in screening for early disease and clinical tasks such as virtual bronchoscopy or surgical planning, while also enabling the exploration of bronchial parameters in large datasets.
• Deep learning combined with optimal-surface graph-cut provides accurate airway lumen and wall segmentations on low-dose CT scans. • Analysis of repeat scans showed that the automated tools had moderate-to-good reproducibility of bronchial measurements down to the 6 generation airway. • Automated measurement of bronchial parameters enables the assessment of large datasets with less man-hours.
基于计算机断层扫描(CT)的支气管参数与疾病状态相关。支气管管腔和管壁的分割和测量通常需要大量的人力。我们评估了深度学习和最佳表面图割方法来自动分割气道管腔和壁,并计算支气管参数的重现性。
在 24 例生命成像(ImaLife)低剂量胸部 CT 扫描中,新训练了一种深度学习气道分割模型。该模型与最佳表面图割结合用于气道壁分割。这些工具用于计算 188 名 ImaLife 参与者的两次 CT 扫描,两次扫描平均间隔 3 个月。假设两次扫描之间没有变化,对支气管参数进行了重现性评估。
在 376 次 CT 扫描中,374 次(99%)成功测量。分割的气道树包含平均 10 代和 250 个分支。管腔面积(LA)的决定系数(R)范围从气管的 0.93 到第 6 代的 0.68,下降到第 8 代的 0.51。相应的壁面积百分比(WAP)值分别为 0.86、0.67 和 0.42。每一代的 LA 和 WAP 的 Bland-Altman 分析显示平均差异接近 0;WAP 和 Pi10 的协议区间(LoA)较窄(±3.7%的平均值),而 LA 的 LoA 较宽(±16.4-22.8%,第 2-6 代)。从第 7 代开始,重现性明显下降,LoA 变宽。
在低剂量胸部 CT 扫描上自动测量支气管参数的方法是评估气道树到第 6 代的可靠方法。
这种用于低剂量 CT 扫描上支气管参数测量的可靠且全自动的流水线,在早期疾病的筛查以及虚拟支气管镜检查或手术规划等临床任务中具有潜在的应用价值,同时还能够在大型数据集上探索支气管参数。
•深度学习结合最佳表面图割在低剂量 CT 扫描上提供了准确的气道管腔和壁分割。•重复扫描分析表明,自动工具在第 6 代气道的支气管测量具有中等至良好的重现性。•支气管参数的自动测量可以减少人工工作小时数,从而评估大型数据集。