Suppr超能文献

使用低剂量胸部 CT 筛查早期肺癌、慢性阻塞性肺疾病和心血管疾病(Big-3):当前证据和技术考虑因素。

Screening for Early Lung Cancer, Chronic Obstructive Pulmonary Disease, and Cardiovascular Disease (the Big-3) Using Low-dose Chest Computed Tomography: Current Evidence and Technical Considerations.

机构信息

Center for Medical Imaging North-East Netherlands (CMI-NEN), University Medical Center Groningen, University of Groningen.

Pulmonary Diseases.

出版信息

J Thorac Imaging. 2019 May;34(3):160-169. doi: 10.1097/RTI.0000000000000379.

Abstract

Lung cancer, chronic obstructive pulmonary disease, and cardiovascular disease are highly prevalent in the general population and expected to cause most deaths by 2050. For these "Big-3," treatment might cure, delay, or stop the progression of disease at a very early stage. Lung nodule growth rate (a biomarker for lung cancer), emphysema/air trapping (a biomarker for chronic obstructive pulmonary disease), and coronary artery calcification (a biomarker for cardiovascular disease) are imaging biomarkers of early stages of the Big-3 that can be acquired with low-dose computed tomography (CT). We hypothesize that a (combined) low-dose CT examination for detection of all 3 diseases may significantly improve the cost-effectiveness of screening in the future. We review the current evidence of the imaging biomarkers for the detection of the Big-3 diseases and present the potential health economic potential of Big-3 screening. Furthermore, we review the low-dose CT protocols to acquire these biomarkers and describe the technical considerations when combining the CT protocols for the different biomarkers.

摘要

肺癌、慢性阻塞性肺疾病和心血管疾病在普通人群中患病率很高,预计到 2050 年将导致大多数人死亡。对于这“三大疾病”,治疗可能在疾病的极早期就能够治愈、延缓或阻止疾病的进展。肺结节生长率(肺癌的生物标志物)、肺气肿/空气滞留(慢性阻塞性肺疾病的生物标志物)和冠状动脉钙化(心血管疾病的生物标志物)是可通过低剂量计算机断层扫描(CT)获得的“三大疾病”早期阶段的影像学生物标志物。我们假设,用于检测所有 3 种疾病的(联合)低剂量 CT 检查可能会显著提高未来筛查的成本效益。我们回顾了用于检测三大疾病的影像学生物标志物的现有证据,并提出了三大疾病筛查的潜在健康经济学潜力。此外,我们还回顾了获取这些生物标志物的低剂量 CT 方案,并描述了在不同生物标志物的 CT 方案组合时的技术注意事项。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验