Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
Nat Commun. 2023 Mar 23;14(1):1599. doi: 10.1038/s41467-023-36688-6.
Practical electrochemical CO-to-CO conversion requires a non-precious catalyst to react at high selectivity and high rate. Atomically dispersed, coordinatively unsaturated metal-nitrogen sites have shown great performance in CO electroreduction; however, their controllable and large-scale fabrication still remains a challenge. Herein, we report a general method to fabricate coordinatively unsaturated metal-nitrogen sites doped within carbon nanotubes, among which cobalt single-atom catalysts can mediate efficient CO-to-CO formation in a membrane flow configuration, achieving a current density of 200 mA cm with CO selectivity of 95.4% and high full-cell energy efficiency of 54.1%, outperforming most of CO-to-CO conversion electrolyzers. By expanding the cell area to 100 cm, this catalyst sustains a high-current electrolysis at 10 A with 86.8% CO selectivity and the single-pass conversion can reach 40.4% at a high CO flow rate of 150 sccm. This fabrication method can be scaled up with negligible decay in CO-to-CO activity. In situ spectroscopy and theoretical results reveal the crucial role of coordinatively unsaturated metal-nitrogen sites, which facilitate CO adsorption and key *COOH intermediate formation.
实用的电化学 CO 到 CO 的转化需要一种非贵金属催化剂,以高选择性和高速率进行反应。原子分散的、配位不饱和的金属-氮位点在 CO 电还原中表现出了优异的性能;然而,其可控和大规模的制备仍然是一个挑战。在此,我们报告了一种在碳纳米管内制备配位不饱和金属-氮位点的通用方法,其中钴单原子催化剂可以在膜流配置中介导有效的 CO 到 CO 的形成,实现电流密度为 200 mA cm,CO 选择性为 95.4%,全电池能量效率为 54.1%,超过了大多数 CO 到 CO 转化电解槽。通过将电池面积扩展到 100 cm,该催化剂在 10 A 的高电流下维持高电流电解,在 150 sccm 的高 CO 流速下,单通转化率可达 40.4%。这种制备方法可以在 CO 到 CO 活性几乎没有衰减的情况下进行放大。原位光谱和理论结果揭示了配位不饱和金属-氮位点的关键作用,它促进了 CO 的吸附和关键 *COOH 中间体的形成。