Liu Yu, Wang Xuchun, Li Xiaodong, Ye Zuyang, Sham Tsun-Kong, Xu Panpan, Cao Muhan, Zhang Qiao, Yin Yadong, Chen Jinxing
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
Department of Chemistry, University of Western Ontario, London, Ontario, ON, N6A 5B7, Canada.
Nat Commun. 2024 Oct 29;15(1):9357. doi: 10.1038/s41467-024-53774-5.
Metal oxide nanostructures with single-atomic heteroatom incorporation are of interest for many applications. However, a universal and scalable synthesis approach with high heteroatom concentrations represents a formidable challenge, primarily due to the pronounced structural disparities between M-O and M-O units. Here, focusing on TiO as the exemplified substrate, we present a diethylene glycol-assisted synthetic platform tailored for the controlled preparation of a library of M-TiO nanostructures, encompassing 15 distinct unary M-TiO nanostructures, along with two types of binary and ternary composites. Our approach capitalizes on the unique properties of diethylene glycol, affording precise kinetic control by passivating the hydrolytic activity of heteroatom and simultaneously achieving thermodynamic control by introducing short-range order structures to dissipate the free energy associated with heteroatom incorporation. The M-TiO nanostructures, characterized by distinctive and abundant M-O-Ti units on the surface, exhibit high efficiency in photochromic photothermal catalysis toward recycling waste polyesters. This universal synthetic platform contributes to the preparation of materials with broad applicability and significance across catalysis, energy conversion, and biomedicine.
具有单原子杂原子掺入的金属氧化物纳米结构在许多应用中备受关注。然而,一种具有高杂原子浓度的通用且可扩展的合成方法面临着巨大挑战,主要是由于M-O和M-O单元之间明显的结构差异。在此,以TiO为例,我们提出了一种二甘醇辅助的合成平台,该平台专为可控制备一系列M-TiO纳米结构而设计,包括15种不同的一元M-TiO纳米结构,以及两种二元和三元复合材料。我们的方法利用了二甘醇的独特性质,通过钝化杂原子的水解活性实现精确的动力学控制,同时通过引入短程有序结构来耗散与杂原子掺入相关的自由能,从而实现热力学控制。M-TiO纳米结构表面具有独特且丰富的M-O-Ti单元,在光致变色光热催化回收废聚酯方面表现出高效率。这个通用的合成平台有助于制备在催化、能量转换和生物医学等领域具有广泛适用性和重要意义的材料。