Suppr超能文献

定制硼酸盐介导物种可通过可持续熔盐CO电解实现工业CO生产,并提高整体能源效率。

Tailoring Borate Mediator Species Enables Industrial CO Production with Improved Overall Energy Efficiency by Sustainable Molten Salt CO Electrolysis.

作者信息

Li Xinyu, Deng Bowen, Du Kaifa, Li Wenmiao, Chen Di, Qu Xin, Pang Fangzhao, Zhang Xiaodan, Zha Hao, Yin Huayi, Wang Dihua

机构信息

School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, P. R. China.

Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430072, P. R. China.

出版信息

Adv Sci (Weinh). 2025 Jan;12(4):e2406457. doi: 10.1002/advs.202406457. Epub 2024 Dec 4.

Abstract

The electrochemical conversion of CO into CO represents a promising strategy for mitigating excessive global greenhouse gas emissions. Nevertheless, achieving industrial-scale electrochemical CO-to-CO conversion with enhanced selectivity and reduced energy consumption presents significant challenges. In this study, a borate-enhanced molten salt process for CO capture and electrochemical transformation is employed, achieving over 98% selectivity for CO and over 55% energy efficiency without the necessity for complex and costly electrocatalysts. Cathodic CO electro-reduction (COER) with the anodic oxygen evolution reaction (OER) at an overall current density of 500 mA cm using non-nanostructured transition-metal plate electrodes at 650 °C is coupled. By regulating the electrolyte's oxo-basicity with earth-abundant borax (NaBO), a borate-enhanced electrolyte is established that accelerates the overall electrochemical reaction efficiently. This system involved a series of well-designed target borate species (BO , BO , and BO ) that acted as mediators shuttling between the cathode and anode, favoring CO as the primary cathodic product. Manipulating the atmosphere above the anode facilitated a spontaneous transformation of borates, further enhancing OER performance with long-term operational stability over a cumulative period of 50 h, while also reducing overall energy consumption. This work presents a cost-effective strategy for the industrial-scale production of CO derived from CO, contributing to a lower carbon footprint by establishing a sustainable borate-mediated closed loop.

摘要

将二氧化碳电化学转化为一氧化碳是缓解全球过量温室气体排放的一种很有前景的策略。然而,要实现具有更高选择性和更低能耗的工业规模电化学二氧化碳到一氧化碳的转化面临重大挑战。在本研究中,采用了一种硼酸盐增强的熔盐工艺用于二氧化碳捕获和电化学转化,在无需复杂且昂贵的电催化剂的情况下,实现了一氧化碳选择性超过98%以及能量效率超过55%。在650℃下,使用非纳米结构的过渡金属平板电极,将阴极二氧化碳电还原(COER)与阳极析氧反应(OER)在500 mA cm的总电流密度下耦合。通过用储量丰富的硼砂(Na₂B₄O₇)调节电解质的氧碱度,建立了一种硼酸盐增强的电解质,能有效加速整个电化学反应。该系统涉及一系列精心设计的目标硼酸盐物种(BO₂⁻、BO₃³⁻和BO₄⁵⁻),它们作为媒介在阴极和阳极之间穿梭,有利于一氧化碳作为主要阴极产物。控制阳极上方的气氛促进了硼酸盐的自发转化,在50小时的累积运行期间进一步提高了析氧反应性能并具有长期运行稳定性,同时还降低了总能耗。这项工作提出了一种具有成本效益的策略,用于从二氧化碳工业规模生产一氧化碳,通过建立可持续的硼酸盐介导的闭环,有助于降低碳足迹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/059c/11775544/62b1e958500e/ADVS-12-2406457-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验