文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

草和牛粪的厌氧共消化:动力学和温室气体计算。

Anaerobic co-digestion of grass and cow manure: kinetic and GHG calculations.

机构信息

Vocational School of Technical Sciences, Bursa Uludag University, Bursa, Turkey.

出版信息

Sci Rep. 2023 Apr 18;13(1):6320. doi: 10.1038/s41598-023-33169-0.


DOI:10.1038/s41598-023-33169-0
PMID:37072450
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10113394/
Abstract

Grass is a highly desirable substrate for anaerobic digestion because of its higher biodegradability and biogas/methane yield. In this study, anaerobic co-digestion of grass, cow manure and sludge was studied under mesophilic conditions for 65 days. Experiments were performed on a feed ratio of grass/manure from 5 to 25%, respectively. The maximum cumulative biogas and methane yield was obtained as 331.75 mLbiogas/gVS and 206.64 mLCH/gVS for 25% ratio. Also, the results of the experiments were tested on the three different kinetics model which are the first order kinetic model, modified Gompertz model and Logistics model. As a result of the study, it was found that by using grass nearly 480 × 10 kWh/year electricity may be produced and 0.5 × 10 tons/year CO greenhouse gas emission mitigation may be reached.

摘要

因为其更高的生物降解性和沼气/甲烷产量,草是一种非常理想的厌氧消化底物。在这项研究中,在中温条件下研究了草、牛粪和污泥的厌氧共消化,持续了 65 天。实验在草/粪便的进料比分别为 5%至 25%的条件下进行。对于 25%的比例,最大的累积沼气和甲烷产量分别为 331.75 毫升沼气/克 VS 和 206.64 毫升 CH/克 VS。此外,实验结果还在三种不同的动力学模型上进行了测试,即一级动力学模型、修正的 Gompertz 模型和 Logistics 模型。研究结果表明,使用草每年可产生近 480×10 千瓦时的电力,每年可减少 0.5×10 吨的温室气体 CO 排放。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/096d009c3bd3/41598_2023_33169_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/1b709da47917/41598_2023_33169_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/dd9ca48cff94/41598_2023_33169_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/5d9552d75aba/41598_2023_33169_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/28a2d4733ef3/41598_2023_33169_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/bfc034aab600/41598_2023_33169_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/b31fc7b801cc/41598_2023_33169_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/a5f59992d3d9/41598_2023_33169_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/75dcac94803d/41598_2023_33169_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/c33c5cc7fa4e/41598_2023_33169_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/fdaa7a0a2c42/41598_2023_33169_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/4d63af61f358/41598_2023_33169_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/096d009c3bd3/41598_2023_33169_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/1b709da47917/41598_2023_33169_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/dd9ca48cff94/41598_2023_33169_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/5d9552d75aba/41598_2023_33169_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/28a2d4733ef3/41598_2023_33169_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/bfc034aab600/41598_2023_33169_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/b31fc7b801cc/41598_2023_33169_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/a5f59992d3d9/41598_2023_33169_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/75dcac94803d/41598_2023_33169_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/c33c5cc7fa4e/41598_2023_33169_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/fdaa7a0a2c42/41598_2023_33169_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/4d63af61f358/41598_2023_33169_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60b/10113394/096d009c3bd3/41598_2023_33169_Fig12_HTML.jpg

相似文献

[1]
Anaerobic co-digestion of grass and cow manure: kinetic and GHG calculations.

Sci Rep. 2023-4-18

[2]
In search of the optimal inoculum to substrate ratio during anaerobic co-digestion of spent coffee grounds and cow manure.

Waste Manag Res. 2020-5-1

[3]
Evaluation of methane production from the anaerobic co-digestion of manure of guinea pig with lignocellulosic Andean residues.

Environ Sci Pollut Res Int. 2022-1

[4]
Anaerobic co-digestion of cheese whey and septage: Effect of substrate and inoculum on biogas production.

J Environ Manage. 2022-4-15

[5]
Critical insights into anaerobic co-digestion of wheat straw with food waste and cattle manure: Synergistic effects on biogas yield and kinetic modeling.

Environ Res. 2022-9

[6]
Anaerobic co-digestion of foodwaste with liquid dairy manure or manure digestate: Co-substrate limitation and inhibition.

J Environ Manage. 2018-7-10

[7]
Co-digestion of manure with grass silage and pulp and paper mill sludge using nutrient additions.

Environ Technol. 2016-8

[8]
Co-digestion of palm oil mill effluent for enhanced biogas production in a solar assisted bioreactor: Supplementation with ammonium bicarbonate.

Sci Total Environ. 2019-12-12

[9]
Elevated biogas production from the anaerobic co-digestion of farmhouse waste: Insight into the process performance and kinetics.

Waste Manag Res. 2019-9-18

[10]
Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation.

Bioresour Technol. 2018-8-13

引用本文的文献

[1]
Biogas potential of organosolv pretreated wheat straw as mono and co-substrate: substrate synergy and microbial dynamics.

Sci Rep. 2024-8-8

本文引用的文献

[1]
Taxonomic and enzymatic basis of the cellulolytic microbial consortium KKU-MC1 and its application in enhancing biomethane production.

Sci Rep. 2023-2-20

[2]
Pretreatment of lignocellulosic biogas substrates by filamentous fungi.

J Biotechnol. 2022-12-10

[3]
Investigation of physicochemical characteristics of selected lignocellulose biomass.

Sci Rep. 2022-2-21

[4]
Methane production from green and woody biomass using short rotation willow genotypes for bioenergy generation.

Bioresour Technol. 2021-8

[5]
The greenhouse gas emission effects of rewetting drained peatlands and growing wetland plants for biogas fuel production.

J Environ Manage. 2020-10-10

[6]
Pretreatment strategies for enhanced biogas production from lignocellulosic biomass.

Bioresour Technol. 2020-1-3

[7]
Kinetics of methane production during anaerobic fermentation of chicken manure with sawdust and fungi pre-treated wheat straw.

Waste Manag. 2019-10-31

[8]
Dry anaerobic co-digestion of roadside grass and cattle manure at a 60 L batch pilot scale.

Bioresour Technol. 2019-7-2

[9]
Energy and emission benefits of chicken manure biogas production: a case study.

Environ Sci Pollut Res Int. 2021-3

[10]
Review of the integrated process for the production of grass biomethane.

Environ Sci Technol. 2009-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索