Suppr超能文献

PyAGH:一个基于不同层次组学数据快速构建亲缘关系矩阵的 Python 包。

PyAGH: a python package to fast construct kinship matrices based on different levels of omic data.

机构信息

Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800# Dongchuan Road, Shanghai, China.

Department of Animal Science, College of Animal Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, China.

出版信息

BMC Bioinformatics. 2023 Apr 18;24(1):153. doi: 10.1186/s12859-023-05280-6.

Abstract

BACKGROUND

Construction of kinship matrices among individuals is an important step for both association studies and prediction studies based on different levels of omic data. Methods for constructing kinship matrices are becoming diverse and different methods have their specific appropriate scenes. However, software that can comprehensively calculate kinship matrices for a variety of scenarios is still in an urgent demand.

RESULTS

In this study, we developed an efficient and user-friendly python module, PyAGH, that can accomplish (1) conventional additive kinship matrces construction based on pedigree, genotypes, abundance data from transcriptome or microbiome; (2) genomic kinship matrices construction in combined population; (3) dominant and epistatic effects kinship matrices construction; (4) pedigree selection, tracing, detection and visualization; (5) visualization of cluster, heatmap and PCA analysis based on kinship matrices. The output from PyAGH can be easily integrated in other mainstream software based on users' purposes. Compared with other softwares, PyAGH integrates multiple methods for calculating the kinship matrix and has advantages in terms of speed and data size compared to other software. PyAGH is developed in python and C +  + and can be easily installed by pip tool. Installation instructions and a manual document can be freely available from https://github.com/zhaow-01/PyAGH .

CONCLUSION

PyAGH is a fast and user-friendly Python package for calculating kinship matrices using pedigree, genotype, microbiome and transcriptome data as well as processing, analyzing and visualizing data and results. This package makes it easier to perform predictions and association studies processes based on different levels of omic data.

摘要

背景

在基于不同组学数据水平的关联研究和预测研究中,构建个体间的亲缘关系矩阵是一个重要步骤。构建亲缘关系矩阵的方法变得多样化,不同的方法有其特定的适用场景。然而,能够全面计算各种场景亲缘关系矩阵的软件仍然迫切需要。

结果

在这项研究中,我们开发了一个高效且用户友好的 Python 模块 PyAGH,可以完成(1)基于家系、基因型、转录组或微生物组丰度数据的常规加性亲缘关系矩阵构建;(2)组合群体中的基因组亲缘关系矩阵构建;(3)显性和上位效应亲缘关系矩阵构建;(4)家系选择、追踪、检测和可视化;(5)基于亲缘关系矩阵的聚类、热图和 PCA 分析的可视化。PyAGH 的输出可以根据用户的目的轻松集成到其他主流软件中。与其他软件相比,PyAGH 集成了多种计算亲缘关系矩阵的方法,在速度和数据大小方面优于其他软件。PyAGH 是用 Python 和 C+++开发的,可以通过 pip 工具轻松安装。安装说明和手册可以从 https://github.com/zhaow-01/PyAGH 自由获取。

结论

PyAGH 是一个快速且用户友好的 Python 包,用于使用家系、基因型、微生物组和转录组数据计算亲缘关系矩阵,以及处理、分析和可视化数据和结果。该包使基于不同组学数据水平的预测和关联研究过程更加容易。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/289f/10111838/cc54177ff547/12859_2023_5280_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验