Suppr超能文献

基于介电泳辅助惯性微流控的微颗粒分离:GPU 加速的浸入式边界格子玻尔兹曼模拟。

Microparticle separation using dielectrophoresis-assisted inertial microfluidics: A GPU-accelerated immersed boundary-lattice Boltzmann simulation.

机构信息

Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 1458889694, Iran.

出版信息

Phys Rev E. 2023 Mar;107(3-2):035307. doi: 10.1103/PhysRevE.107.035307.

Abstract

In this study, the migration of microparticles towards the inertial equilibrium positions in a straight microchannel with a square cross section in the presence of an inhomogeneous oscillating electric field was examined. The dynamics of microparticles were simulated using the immersed boundary-lattice Boltzmann method of fluid-structure interaction simulation. Moreover, the lattice Boltzmann Poisson solver was applied to calculate the electric field required for calculation of the dielectrophoretic force using the equivalent dipole moment approximation. These numerical methods were implemented on a single GPU coupled with the AA pattern of storing distribution functions in memory to speed up the computationally demanding simulation of microparticles dynamics. In the absence of an electric field, spherical polystyrene microparticles migrate to four symmetric stable equilibrium positions corresponding to the sidewalls of the square cross-sectional microchannel. The equilibrium distance from the sidewall was increased by increasing the particle size. The equilibrium positions near electrodes disappeared and particles migrated to the other equilibrium positions far from the electrodes by the application of the high-frequency oscillatory electric field at voltages beyond a threshold value. Finally, a two-step dielectrophoresis-assisted inertial microfluidics methodology was introduced for particle separation based on the crossover frequencies and the observed threshold voltages of different particles. The proposed method exploited the synergistic effect of dielectrophoresis and inertial microfluidics methods to remove their limitations, allowing the separation of a broad range of polydisperse particle mixtures with a single device in a short time.

摘要

本研究考察了在非均匀振荡电场存在下,具有方形横截面的直微通道中,微粒向惯性平衡位置的迁移。使用浸入边界-格子玻尔兹曼方法对流体-结构相互作用模拟进行了微粒动力学模拟。此外,应用格子玻尔兹曼泊松求解器计算了所需的电场,以便使用等效偶极矩近似法计算介电泳力。这些数值方法在单个 GPU 上实现,并采用 AA 模式在内存中存储分布函数,以加速对微粒动力学的计算密集型模拟。在没有电场的情况下,球形聚苯乙烯微粒迁移到四个对称稳定的平衡位置,对应于方形横截面微通道的侧壁。通过增加颗粒尺寸,从侧壁的平衡距离增加。在超过阈值电压的高频振荡电场作用下,电极附近的平衡位置消失,微粒迁移到远离电极的其他平衡位置。最后,提出了一种两步介电泳辅助惯性微流控方法,用于基于不同颗粒的交叉频率和观察到的阈值电压进行颗粒分离。所提出的方法利用了介电泳和惯性微流控方法的协同效应,消除了它们的局限性,允许在短时间内使用单个设备分离广泛的多分散颗粒混合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验