PoreLab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
Phys Rev E. 2023 Mar;107(3-2):035108. doi: 10.1103/PhysRevE.107.035108.
We have assessed the assumption of local thermodynamic equilibrium in a shock wave by comparing local thermodynamic data generated with nonequilibrium molecular dynamics (NEMD) simulations with results from corresponding equilibrium simulations. The shock had a Mach number approximately equal to 2 in a Lennard-Jones spline liquid. We found that the local equilibrium assumption holds perfectly well behind the wave front, and is a very good approximation in the front itself. This was supported by calculations of the excess entropy production in the shock front with four different methods that use the local equilibrium assumption in different ways. Two of the methods assume local equilibrium between excess thermodynamic variables by treating the shock as an interface in Gibbs's sense. The other two methods are based on the local equilibrium assumption in a continuous description of the shock front. We show for the shock studied in this work that all four methods give excess entropy productions that are in excellent agreement, with an average variance of 3.5% for the nonequilibrium molecular dynamics (NEMD) simulations. In addition, we solved the Navier-Stokes (N-S) equations numerically for the same shock wave using an equilibrium equation of state (EoS) based on a recently developed perturbation theory. The results for the density, pressure, and temperature profiles agree well with the profiles from the NEMD simulations. For instance, the shock waves generated in the two simulations travel with almost the same speed; the average absolute Mach-number deviation of the N-S simulations relative to NEMD is 2.6% in the investigated time interval.
我们通过将非平衡分子动力学(NEMD)模拟生成的局部热力学数据与相应的平衡模拟结果进行比较,评估了冲击波中局部热力学平衡的假设。冲击波在 Lennard-Jones 样条液体中的马赫数约为 2。我们发现,局部平衡假设在波前后面完全成立,并且在波前本身是一个非常好的近似。这得到了四种不同方法的支持,这些方法使用局部平衡假设以不同的方式计算冲击波前沿的过剩熵产生。其中两种方法通过将冲击波视为吉布斯意义上的界面来处理过剩热力学变量之间的局部平衡。另外两种方法基于冲击波前沿的连续描述中的局部平衡假设。我们表明,对于这项工作中研究的冲击波,所有四种方法给出的过剩熵产生都非常一致,与 NEMD 模拟的平均方差为 3.5%。此外,我们使用基于最近开发的微扰理论的平衡状态方程(EOS)对相同的冲击波进行了数值求解纳维-斯托克斯(N-S)方程。密度、压力和温度分布的结果与 NEMD 模拟的分布非常吻合。例如,两种模拟产生的冲击波以几乎相同的速度传播;在研究的时间间隔内,N-S 模拟相对于 NEMD 的平均绝对马赫数偏差为 2.6%。