Suppr超能文献

决策场理论能否增进我们对基于健康的选择的理解?来自危险健康行为的证据。

Can decision field theory enhance our understanding of health-based choices? Evidence from risky health behaviors.

机构信息

Nuffield Department of Population Health, University of Oxford, Oxford, UK.

Choice Modelling Centre and Institute for Transport Studies, University of Leeds, Leeds, UK.

出版信息

Health Econ. 2023 Aug;32(8):1710-1732. doi: 10.1002/hec.4685. Epub 2023 Apr 18.

Abstract

Discrete choice models are almost exclusively estimated assuming random utility maximization (RUM) is the decision rule applied by individuals. Recent studies indicate alternative behavioral assumptions may be more appropriate in health. Decision field theory (DFT) is a psychological theory of decision-making, which has shown promise in transport research. This study introduces DFT to health economics, empirically comparing it to RUM and random regret minimization (RRM) in risky health settings, namely tobacco and vaccine choices. Model fit, parameter ratios, choice shares, and elasticities are compared between RUM, RRM and DFT. Test statistics for model differences are derived using bootstrap methods. Decision rule heterogeneity is investigated using latent class models, including novel latent class DFT models. Tobacco and vaccine choice data are better explained with DFT than with RUM or RRM. Parameter ratios, choice shares and elasticities differ significantly between models. Mixed results are found for the presence of decision rule heterogeneity. We conclude that DFT shows promise as a behavioral assumption that underpins the estimation of discrete choice models in health economics. The significant differences demonstrate that care should be taken when choosing a decision rule, but further evidence is needed for generalizability beyond risky health choices.

摘要

离散选择模型几乎都是在假设个体采用随机效用最大化(RUM)这一决策规则的前提下进行估计的。最近的研究表明,在健康领域,其他替代行为假设可能更为合适。决策场理论(DFT)是一种决策心理学理论,它在交通研究领域已经显示出了潜力。本研究将 DFT 引入健康经济学,实证比较了它在风险健康环境(即烟草和疫苗选择)中与 RUM 和随机后悔最小化(RRM)的表现。在 RUM、RRM 和 DFT 之间比较了模型拟合、参数比、选择份额和弹性。使用自举方法得出模型差异的检验统计量。使用潜在类别模型(包括新的潜在类别 DFT 模型)研究决策规则异质性。与 RUM 或 RRM 相比,DFT 能更好地解释烟草和疫苗选择数据。模型之间的参数比、选择份额和弹性存在显著差异。对于决策规则异质性的存在,得到了混合的结果。我们得出的结论是,DFT 作为一种行为假设,在健康经济学中用于估计离散选择模型具有很大的潜力。显著的差异表明,在选择决策规则时应谨慎,但需要进一步的证据来证明其在风险健康选择之外的通用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验