Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, CA 92697-3425, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA.
Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, CA 92697-3425, USA.
Neuron. 2022 Jan 5;110(1):21-35. doi: 10.1016/j.neuron.2021.10.030. Epub 2021 Nov 15.
In basic neuroscience research, data are often clustered or collected with repeated measures, hence correlated. The most widely used methods such as t test and ANOVA do not take data dependence into account and thus are often misused. This Primer introduces linear and generalized mixed-effects models that consider data dependence and provides clear instruction on how to recognize when they are needed and how to apply them. The appropriate use of mixed-effects models will help researchers improve their experimental design and will lead to data analyses with greater validity and higher reproducibility of the experimental findings.
在基础神经科学研究中,数据通常是聚类或重复测量收集的,因此是相关的。最广泛使用的方法,如 t 检验和 ANOVA,都没有考虑数据的相关性,因此经常被错误使用。本入门介绍了考虑数据相关性的线性和广义混合效应模型,并提供了清晰的说明,指导何时需要使用它们以及如何应用它们。混合效应模型的正确使用将帮助研究人员改进他们的实验设计,并导致数据分析具有更高的有效性和实验结果的更高可重复性。