Guan Qinghua, Liu Liwu, Sun Jian, Wang Jiale, Guo Jianglong, Liu Yanju, Leng Jinsong
Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, People's Republic of China.
Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, People's Republic of China.
Soft Robot. 2023 Oct;10(5):1001-1014. doi: 10.1089/soro.2022.0104. Epub 2023 Apr 19.
Soft robots equipped with multifunctionalities have been increasingly needed for secure, adaptive, and autonomous functioning in unknown and unpredictable environments. Robotic stacking is a promising solution to increase the functional diversity of soft robots, which are required for safe human-machine interactions and adapting in unstructured environments. However, most existing multifunctional soft robots have a limited number of functions or have not fully shown the superiority of the robotic stacking method. In this study, we present a novel robotic stacking strategy, Netting-Rolling-Splicing (NRS) stacking, based on a dimensional raising method via 2D-to-3D rolling-and-splicing of netted stackable pneumatic artificial muscles to quickly and efficiently fabricate multifunctional soft robots based on the same, simple, and cost-effective elements. To demonstrate it, we developed a TriUnit robot that can crawl 0.46 ± 0.022 body length per second (BL/s) and climb 0.11 BL/s, and can carry a 3 kg payload while climbing. Also, the TriUnit can be used to achieve novel omnidirectional pipe climbing including rotating climbing, and conduct bionic swallowing-and-regurgitating, multi-degree-of-freedom manipulation based on their multimodal combinations. Apart from these, steady rolling, with a speed of 0.19 BL/s, can be achieved by using a pentagon unit. Furthermore, we applied the TriUnit pipe climbing robot in panoramic shooting and cargo transferring to demonstrate the robot's adaptability for different tasks. The NRS stacking-driven soft robot here has demonstrated the best overall performance among existing stackable soft robots, representing a new and effective way for building multifunctional and multimodal soft robots in a cost-effective and efficient way.
在未知和不可预测的环境中实现安全、自适应和自主运行,越来越需要具备多种功能的软体机器人。机器人堆叠是一种很有前景的解决方案,可增加软体机器人的功能多样性,这对于安全的人机交互和在非结构化环境中的适应能力是必需的。然而,现有的大多数多功能软体机器人功能数量有限,或者尚未充分展现机器人堆叠方法的优势。在本研究中,我们提出了一种新颖的机器人堆叠策略——网式-滚动-拼接(NRS)堆叠,该策略基于一种维度提升方法,通过对可堆叠的网状气动人工肌肉进行二维到三维的滚动和拼接,以快速、高效地制造基于相同、简单且经济高效的元件的多功能软体机器人。为了进行演示,我们开发了一种TriUnit机器人,它每秒可以爬行0.46±0.022个身体长度(BL/s),攀爬速度为0.11 BL/s,并且在攀爬时可以承载3千克的负载。此外,TriUnit可用于实现包括旋转攀爬在内的新型全方位管道攀爬,并基于其多模态组合进行仿生吞咽和反刍、多自由度操作。除此之外,使用五边形单元可以实现速度为0.19 BL/s的稳定滚动。此外,我们将TriUnit管道攀爬机器人应用于全景拍摄和货物转运,以展示该机器人对不同任务的适应性。这里由NRS堆叠驱动的软体机器人在现有的可堆叠软体机器人中展现出了最佳的整体性能,为以经济高效的方式构建多功能和多模态软体机器人提供了一种新的有效方法。