1 Department of Mechanical Engineering, Stanford University, Stanford, California.
2 Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
Soft Robot. 2019 Feb;6(1):95-108. doi: 10.1089/soro.2018.0034. Epub 2018 Oct 24.
Soft continuum robots exhibit access and manipulation capabilities in constrained and cluttered environments not achievable by traditional robots. However, navigation of these robots can be difficult due to the kinematics of these devices. Here we describe the design, modeling, and control of a soft continuum robot with a tip extension degree of freedom. This design enables extremely simple navigation of the robot through decoupled steering and forward movement. To navigate to a destination, the robot is steered to point at the destination and the extension degree of freedom is used to reach it. Movement of the tip is always in the direction tangent to the end of the robot's backbone, independent of the shape of the rest of the backbone. Steering occurs by inflating multiple series pneumatic artificial muscles arranged radially around the backbone and extending along the robot's whole length, while extension is implemented using pneumatically driven tip eversion. We present models and experimentally verify the growing robot kinematics. Control of the growing robot is demonstrated using an eye-in-hand visual servo control law that enables growth and steering of the robot to designated locations.
软连续体机器人在受限和杂乱的环境中具有访问和操作能力,这是传统机器人无法实现的。然而,由于这些设备的运动学,这些机器人的导航可能会很困难。在这里,我们描述了一种具有尖端延伸自由度的软连续体机器人的设计、建模和控制。这种设计使得机器人可以通过解耦的转向和前进运动来实现极其简单的导航。为了到达目的地,机器人被转向指向目的地,然后使用延伸自由度到达目的地。尖端的移动始终沿着机器人主干末端的切线方向,而与主干的其余部分的形状无关。转向是通过膨胀沿着机器人全长延伸的多个围绕主干径向布置的串联气动人工肌肉来实现的,而延伸则是通过气动驱动的尖端外翻来实现的。我们提出了模型,并通过实验验证了不断增长的机器人运动学。使用眼在手视觉伺服控制律来演示对生长机器人的控制,该控制律可以使机器人生长和转向到指定位置。